References of "Alvera Azcarate, Aïda"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailExperimental in situ exposure of the seagrass Posidonia oceanica (L.) Delile to 15 trace elements
Richir, Jonathan ULg; Luy, Nicolas; Lepoint, Gilles ULg et al

in Aquatic Toxicology (2013), 140-141

The Mediterranean seagrass Posidonia oceanica (L.) Delile has been used for trace element (TE) biomonitoring since decades ago. However, present informations for this bioindicator are limited mainly to ... [more ▼]

The Mediterranean seagrass Posidonia oceanica (L.) Delile has been used for trace element (TE) biomonitoring since decades ago. However, present informations for this bioindicator are limited mainly to plant TE levels, while virtually nothing is known about their fluxes through P. oceanica meadows. We therefore contaminated seagrass bed portions in situ at two experimental TE levels with a mix of 15 TEs (Al, V,Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ag, Cd, Pb and Bi) to study their uptake and loss kinetics in P. oceanica. Shoots immediately accumulated pollutants from the beginning of exposures. Once contaminations ended, TE concentrations came back to their original levels within two weeks, or at least showed a clear decrease. P. oceanica leaves exhibited different uptake kinetics depending on elements and leaf age: the younger growing leaves forming new tissues incorporated TEs more rapidly than the older senescent leaves. Leaf epiphytes also exhibited a net uptake of most TEs, partly similar to that of P. oceanica shoots. The principal route of TE uptake was through the water column, as no contamination of superficial sediments was observed. However, rhizomes indirectly accumulated many TEs during the overall experiments through leaf to rhizome translocation processes. This study thus experimentally confirmed that P.oceanica shoots are undoubtedly an excellent short-term bioindicator and that long-term accumulations could be recorded in P. oceanica rhizomes. [less ▲]

Detailed reference viewed: 101 (39 ULg)
Full Text
Peer Reviewed
See detailGeneration of analysis and consistent error fields using the Data Interpolating Variational Analysis (Diva)
Troupin, Charles ULg; Barth, Alexander ULg; Sirjacobs, Damien ULg et al

in Ocean Modelling (2012), 52-53

The Data Interpolating Variational Analysis (Diva) is a method designed to interpolate irregularly-spaced, noisy data onto any desired location, in most cases on regular grids. It is the combination of a ... [more ▼]

The Data Interpolating Variational Analysis (Diva) is a method designed to interpolate irregularly-spaced, noisy data onto any desired location, in most cases on regular grids. It is the combination of a particular methodology, based on the minimisation of a cost function, and a numerically efficient method, based on a finite-element solver. The cost function penalises the misfit between the observations and the reconstructed field, as well as the regularity or smoothness of the field. The intrinsic advantages of the method are its natural way to take into account topographic and dynamic constraints (coasts, advection, . . . ) and its capacity to handle large data sets, frequently encountered in oceanography. The method provides gridded fields in two dimensions, usually in horizontal layers. Three-dimension fields are obtained by stacking horizontal layers. In the present work, we summarize the background of the method and describe the possible methods to compute the error field associated to the analysis. In particular, we present new developments leading to a more consistent error estimation, by determining numerically the real covariance function in Diva, which is never formulated explicitly, contrarily to Optimal Interpolation. The real covariance function is obtained by two concurrent executions of Diva, the first providing the covariance for the second. With this improvement, the error field is now perfectly consistent with the inherent background covariance in all cases. A two-dimension application using salinity measurements in the Mediterranean Sea is presented. Applied on these measurements, Optimal Interpolation and Diva provided very similar gridded fields (correlation: 98.6%, RMS of the difference: 0.02). The method using the real covariance produces an error field similar to the one of OI, except in the coastal areas. [less ▲]

Detailed reference viewed: 449 (51 ULg)
Peer Reviewed
See detailAn EOF-based technique to compute merged high resolution sea surface temperature fields
Alvera Azcarate, Aïda ULg; Troupin, Charles ULg; Barth, Alexander ULg et al

Conference (2012, May 10)

High quality sea surface temperature (SST) data sets are needed for various applications, including numerical weather prediction, ocean forecasting and climate research. The coverage, resolution and ... [more ▼]

High quality sea surface temperature (SST) data sets are needed for various applications, including numerical weather prediction, ocean forecasting and climate research. The coverage, resolution and precision of individual SST satellite observations is not sufficient for these applications, therefore the merging of these complementary data sets is needed to reduce the final data set error. This is usually performed by optimal interpolation (OI).We present an extension of the capabilities of DINEOF (Data INterpolating Empirical Orthogonal Functions) to merge data from different platforms. The analysis is based on the formalism of OI, but the crucial difference is that the error covariance is not parametrized a priori using an analytical expression, but expressed using a spatial EOF basis calculated by DINEOF. This EOF basis represents more realistically the complex variability of SST data sets than the parametric covariance used in most OI applications. An example will be presented using data from a polar-orbiting satellite (AVHRR on MetOp) and a geostationary satellite (SEVIRI on MSG). The high spatial resolution of the polar-orbiting satellite and the high temporal resolution of the geostationary satellite are retained to create a very high spatial and temporal resolution field of the western Mediterranean SST. The results are validated with independent data. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Peer Reviewed
See detailReconstruction of Total Suspended Matter data over the North Sea using DINEOF: use of the Gaussian anamorphosis transformation
Alvera Azcarate, Aïda ULg; Neukermans, Griet; Barth, Alexander ULg et al

Conference (2012, May 10)

Total Suspended Matter (TSM) from the SEVIRI sensor in the North Sea will be analysed using DINEOF (Data INterpolating Empirical Orthogonal Functions), an EOFbased technique to reconstruct missing data ... [more ▼]

Total Suspended Matter (TSM) from the SEVIRI sensor in the North Sea will be analysed using DINEOF (Data INterpolating Empirical Orthogonal Functions), an EOFbased technique to reconstruct missing data. The information needed to reconstruct the missing data is computed internally based on a truncated EOF basis, so no assumptions about the statistics of the data have to be made. DINEOF uses the mean and covariance of the original data to calculate the EOF basis. If the data are normally distributed, then the probability density distribution can be completely described by their mean and the eigenvectors of the covariance matrix (the EOFs). Variables such as TSM, however, do not have a Gaussian distribution, since TSM is never smaller than zero. DINEOF typically does not take this into account. To overcome this, a logarithmic transformation is usually performed to non-Gaussian variables, although the exponential transformation needed to retrieve the original variable units after using DINEOF leads sometimes to unrealistic high values in the reconstruction. An empirical transformation, which allows to obtain a normally distributed variable based solely on the data themselves, will be applied. This procedure, called Gaussian anamorphosis, is sometimes used in data assimilation. A Gaussian anamorphosis transformation will be applied to the TSM data of the North Sea prior to their reconstruction. The high spatial and temporal dynamics of the gapfree geostationary TSM data set will be analysed, focusing on tidal dynamics and sub-daily variability. [less ▲]

Detailed reference viewed: 29 (3 ULg)
Full Text
See detailReconstruction and analysis of QuikSCAT wind measurements with an EOF-based technique
Troupin, Charles ULg; Alvera Azcarate, Aïda ULg; Beckers, Jean-Marie ULg

Poster (2012, April 24)

QuikSCAT wind products are often used to provide numerical model atmospheric forcing. However, due to the configuration of the satellite swaths, gaps are frequently observed in the daily wind maps. We ... [more ▼]

QuikSCAT wind products are often used to provide numerical model atmospheric forcing. However, due to the configuration of the satellite swaths, gaps are frequently observed in the daily wind maps. We present a solution based on truncated EOF decomposition to fill these gaps. [less ▲]

Detailed reference viewed: 25 (2 ULg)
Full Text
See detailReconstruction of the long-term satellite-derived sea surface temperature in the South China Sea
Huynh, Thi Hong Ngu ULg; Alvera Azcarate, Aïda ULg; Barth, Alexander ULg et al

Poster (2012, February 24)

The AVHRR (Advanced Very High Resolution Radiometer) sea surface temperature is very useful for researches in oceanography because of its high resolution. An AVHRR limitation is the high missing data ... [more ▼]

The AVHRR (Advanced Very High Resolution Radiometer) sea surface temperature is very useful for researches in oceanography because of its high resolution. An AVHRR limitation is the high missing data percentage due to cloud coverage. In the South China Sea, the average missing data is usually more than 80%, especially more than 95% in the region near the Borneo Island. In this study, we use DINEOF tool to reconstruct a daily night-time AVHRR data set with horizontal resolution of 4km spanning from 1989 to 2009. Besides, a comparison between the results and in situ data is shown. The EOF analysis shows that the first three modes explain about 95% of seasonal variability. [less ▲]

Detailed reference viewed: 46 (5 ULg)
Full Text
See detailViewing through the clouds in satellite images
Troupin, Charles ULg; Barth, Alexander ULg; Alvera Azcarate, Aïda ULg et al

Poster (2012, February 24)

Detailed reference viewed: 20 (6 ULg)
Full Text
Peer Reviewed
See detailOutlier detection in satellite data using spatial coherence
Alvera Azcarate, Aïda ULg; Sirjacobs, Damien ULg; Barth, Alexander ULg et al

in Remote Sensing of Environment (2012), 119

Satellite data sets often contain outliers (i.e., anomalous values with respect to the surrounding pixels), mostly due to undetected clouds and rain or to atmospheric and land contamination. A methodology ... [more ▼]

Satellite data sets often contain outliers (i.e., anomalous values with respect to the surrounding pixels), mostly due to undetected clouds and rain or to atmospheric and land contamination. A methodology to detect outliers in satellite data sets is presented. The approach uses a truncated Empirical Orthogonal Function (EOF) basis. The information rejected by this EOF basis is used to identify suspect data. A proximity test and a local median test are also performed, and a weighted sum of these three tests is used to accurately detect outliers in a data set. Most satellite data undergo automated quality-check analyses. The approach presented exploits the spatial coherence of the geophysical fields, therefore detecting outliers that would otherwise pass such checks. The methodology is applied to infrared sea surface temperature (SST), microwave SST and chlorophyll-a concentration data over different domains, to show the applicability of the technique to a range of variables and temporal and spatial scales. A series of sensitivity tests and validation with independent data are also conducted. [less ▲]

Detailed reference viewed: 163 (21 ULg)
See detailHiSea: High resolution merged satellite sea surface temperature fields
Alvera Azcarate, Aïda ULg; Barth, Alexander ULg; Toussaint, Marie-Eve ULg et al

Conference (2011, May 25)

Several satellites measure Sea Surface Temperature (SST), each of these with different technical specificities and error sources. Together with in situ data, they form a highly complementary data set. The ... [more ▼]

Several satellites measure Sea Surface Temperature (SST), each of these with different technical specificities and error sources. Together with in situ data, they form a highly complementary data set. The creation of merged SST products, integrating the strengths of each of its components and minimising their weaknesses, is however not an easy task, but it is certainly a desirable goal that has generated a large amount of research over the last years. The main objectives of this project are, among others: 1.To develop a technology, based on DINEOF (Data Interpolating Empirical Orthogonal Functions), that allows to merge different data sets at very different sampling intervals (in space and time) and create an integrated product at the highest sampling frequency and with the highest quality possible. 2.To provide improved, merged analyses of variables such as SST and chlorophyll. 3.Obtain a better understanding of the diurnal cycle of the studied variables. 4.To better understand the relation between variables (and take advantage of these relationship to improve the analyses). 5.Using the above-mentioned developments, explore the capability of the developed technology to produce SST forecasts based on multi-variate EOFs and model forecasts. We will present the first preliminary results for merging different SST data sets, as well as our plans for future developments and applications. Website of the project: http://www.gher.ulg.ac.be/HiSea/ [less ▲]

Detailed reference viewed: 34 (7 ULg)
Peer Reviewed
See detailMerging satellite and in situ sea surface temperature data using DINEOF
Alvera Azcarate, Aïda ULg; Barth, Alexander ULg; Beckers, Jean-Marie ULg

Conference (2011, April 05)

High quality sea surface temperature data sets are needed for various applications, including numerical weather prediction, ocean forecasting and climate research. The coverage, resolution and precision ... [more ▼]

High quality sea surface temperature data sets are needed for various applications, including numerical weather prediction, ocean forecasting and climate research. The coverage, resolution and precision of individual sea surface temperature observations is not sufficient for these applications, therefore merging of complementary data sets is needed to increase the coverage and to reduce the final data set error. DINEOF (Data Interpolating Empirical Orthogonal Functions) is an EOF-based technique to reconstruct missing information -due to clouds, for example in satellite data sets. A new development of this method consists in its capability to merge different data sources into one estimate. This development is tested using AVHRR data of the western Mediterranean Sea and in situ data from various international databases (World Ocean Database (WOD), MEDAR/Medatlas, Coriolis Data Center, International Council for the Exploration of the Sea (ICES) and International Comprehensive Ocean-Atmosphere Data Set (ICOADS)). An error assessment between the satellite and in situ data is performed first, in order to determine the error statistics between these two data sources. The error is calculated by database, platform type (CTD, XBT, drifters, bottles and ships) and depth. This error assessment is used to merge the in situ and satellite data. The impact of the sensor-specific errors on the quality of the final product will be assessed, and compared to the results obtained when the same error estimate is used for all sensors. The benefit of using in situ data in addition to satellite data will be also discussed. Additional information can be found at http://modb.oce.ulg.ac.be/mediawiki/index.php/DINEOF and http://gherdiva.phys.ulg.ac.be/DINEOF/ [less ▲]

Detailed reference viewed: 60 (1 ULg)
See detailEOF analysis of Sea Surface Temperature in the Canary Island - Madeira region
Troupin, Charles ULg; Alvera Azcarate, Aïda ULg; Barth, Alexander ULg et al

Conference (2011, April 05)

We analyzed Sea Surface Temperature (SST) images in a region covering the Canary Islands and Madeira archipelagos, with the following objectives 1. The reconstruction of incomplete SST satellite images ... [more ▼]

We analyzed Sea Surface Temperature (SST) images in a region covering the Canary Islands and Madeira archipelagos, with the following objectives 1. The reconstruction of incomplete SST satellite images during the year 2009. 2. The determination of the main spatial and temporal patters in the region. SST images for 2009 are downloaded from the Medspiration project (http://www.medspiration.org). The images consist of combined measurements from several satellite systems. The images with less than 5% of valid pixels (e.g., clouds) were removed, so that out of the 365 initial images, 347 were kept. The method used in this work for the reconstruction of missing data is Data INterpolating Empirical Orthogonal Functions (DINEOF, Alvera-Azcárate et al., 2005). The results show that the first mode is largely dominant, with 87% of the variance explained, and represents the regional seasonal cycle. The second mode accounts for 9% of the variance and depicts a separation between coastal waters and open-ocean waters. The signal of the Cape Ghir upwelling filament is also present in the second mode. The reconstruction allows one to reproduce the characteristic mesoscale features of the region: the coastal upwelling, the island wakes (Gran Canaria, Madeira, ... ), the filament and the eddies in the lee of the main islands. A near-operational version of the reconstruction has been implemented and is available at http://gher-diva.phys.ulg.ac.be/DINEOF/dineof_allCAN.html [less ▲]

Detailed reference viewed: 62 (6 ULg)
Peer Reviewed
See detailSatellite and in situ sea surface temperature comparison and merging in the Mediterranean Sea.
Alvera Azcarate, Aïda ULg; Barth, Alexander ULg; Beckers, Jean-Marie ULg

Conference (2011, April 03)

A comparison between in situ and satellite sea surface temperature (SST) for the western Mediterranean Sea is presented. Several international databases are used to extract in situ data: World Ocean ... [more ▼]

A comparison between in situ and satellite sea surface temperature (SST) for the western Mediterranean Sea is presented. Several international databases are used to extract in situ data: World Ocean Database (WOD), MEDAR/Medatlas, Coriolis Data Center, International Council for the Exploration of the Sea (ICES) and International Comprehensive Ocean-Atmosphere Data Set (ICOADS). The in situ data are classified into different platforms or sensors (CTD, XBT, drifters, bottles, ships), in order to assess the average difference between these type of data and AVHRR (Advanced Very High Resolution Radiometer) SST satellite data. Attention is given also to the relative accuracy of each database, and advantages and shortcomings on the use of each database will be discussed. The error assessment will be used to merge in situ and satellite SST data using DINEOF (Data Interpolating Empirical Orthogonal Functions), an EOF-based technique. The impact of the sensor-specific errors on the quality of the final product will be assessed, and compared to the results obtained when a more general error estimate is used. [less ▲]

Detailed reference viewed: 36 (4 ULg)
Full Text
See detailAdvanced Data Interpolating Variational Analysis. Application to climatological data
Troupin, Charles ULg; Sirjacobs, Damien ULg; Rixen, Michel et al

Poster (2011, April)

DIVA (Data Interpolating Variational Analysis) is a variational analysis tool designed to interpolate irregularly-spaced, noisy data onto any desired location, in most cases on regular grids. It is the ... [more ▼]

DIVA (Data Interpolating Variational Analysis) is a variational analysis tool designed to interpolate irregularly-spaced, noisy data onto any desired location, in most cases on regular grids. It is the combination of a particular methodology, based on the minimization of a functional, and a numerically efficient resolution method, based on a finite elements solver. The intrinsic advantages of DIVA are its natural way to take into account topographic and dynamic constraints (coasts, advection, ...) and its capacity to handle large data sets, frequently encountered in oceanography. In the present work, we describe various improvements to the variational analysis tool. The most significant advance is the development of a full error calculation, whilst until now, only an approximate error-field estimate was available. The key issue is the numerical determination of the real covariance function in DIVA, which is not formulated explicitly. This is solved by two concurrent executions of two DIVA, one providing the covariance for the other. The new calculation of the error field is now perfectly coherent with the inherent background covariance in all cases. The correlation length, which was previously set uniform over the computational domain, is now allowed to vary spatially. The efficiency of the tools for estimating the signal-to-noise ratio, through generalized cross-validation, has also been improved. Finally, a data quality-control method is implemented and allows one to detect possible outliers, based on statistics of the data-reconstruction misfit. The added value of these features are illustrated in the case of a large data set of salinity measured in the Mediterranean Sea. Several analyses are performed with different parameters in order to demonstrate their influence on the interpolated fields. In particular, we examine the benefits of using the parameter optimization tools and the advection constraint. The results are validated by means of a subset of data set apart for an independent validation. The corresponding errors fields are estimated using different methods and underline the role of the data coverage. [less ▲]

Detailed reference viewed: 95 (17 ULg)
See detailAssimilation of high-frequency radar currents in the Ligurian Sea
Barth, Alexander ULg; Chiggiato, Jacopo; Alvera Azcarate, Aïda ULg et al

Conference (2011, April)

The circulation in the Ligurian Sea is dominated by strong currents, namely the Western Corsican Current and the East Corsican Current, which jointly form the Northern Current. A high mesoscale activity ... [more ▼]

The circulation in the Ligurian Sea is dominated by strong currents, namely the Western Corsican Current and the East Corsican Current, which jointly form the Northern Current. A high mesoscale activity, including meanders and eddy formation, is associated to those energetic currents. The non-linear instability processes and apparently chaotic behavior of this current system make this region a challenging testbed for data assimilation. High-frequency radar surface currents have been measured by the NATO Undersea Research Centre (NURC), La Spezia, Italy from two sites at the Italian Coast (Isola Palmaria and San Rossore). Each of those sites measures the radial currents relative to the position of the radar system. This WERA system captures well the general circulation and mesoscale flow features. The present study shows an application of the assimilation of those measurements in a nested model con- figuration of the Ligurian Sea. It is assumed that the error in the model surface currents comes primarily from uncertainties in the lateral boundary conditions and surface wind fields. The objective of this study is to reduce the uncertainty in these forcing fields by data assimilation. An ensemble of 100 perturbed lateral boundary conditions and surface wind fields is created to take the uncertainty into account. Using an ensemble-smoother technique described in Barth et al, 2010 (Ocean Science) and Barth et al, 2010 (Ocean Dynamics, in press), improved estimates of the wind forcing and boundary conditions are obtained. By rerunning the model with the updated forcing fields, it is verified that the analyzed model solution is closer to the observed HF radar currents. This technique is similar to 4D-Var, but since it is based on the ensemble covariance between forcing fields and observations, it does not require the formulation of an adjoint. [less ▲]

Detailed reference viewed: 40 (2 ULg)
Full Text
See detailAdvanced Data Interpolating Variational Analysis. Application to climatological data.
Troupin, Charles ULg; Sirjacobs, Damien ULg; Rixen, Michel et al

Poster (2011, March 21)

Detailed reference viewed: 22 (5 ULg)
Full Text
Peer Reviewed
See detailThermocline characterisation in the Cariaco basin: A modelling study of the thermocline annual variation and its relation with winds and chlorophyll-a concentration
Alvera Azcarate, Aïda ULg; Barth, Alexander ULg; Weisberg, Robert H. et al

in Continental Shelf Research (2011), 31(1), 73-84

The spatial and temporal evolution of the thermocline depth and width of the Cariaco basin (Venezuela) is analysed by means of a three-dimensional hydrodynamic model. The thermocline depth and width are ... [more ▼]

The spatial and temporal evolution of the thermocline depth and width of the Cariaco basin (Venezuela) is analysed by means of a three-dimensional hydrodynamic model. The thermocline depth and width are determined through the fitting of model temperature profiles to a sigmoid function. The use of whole profiles for the fitting allows for a robust estimation of the thermocline characteristics, mainly width and depth. The fitting method is compared to the maximum gradient approach, and it is shown that, under some circumstances, the method presented in this work leads to a better characterization of the thermocline. After assessing, through comparison with independent {\it in situ} data, the model capabilities to reproduce the Cariaco basin thermocline, the seasonal variability of this variable is analysed, and the relationship between the annual cycle of the thermocline depth, the wind field and the distribution of chlorophyll-a concentration in the basin is studied. The interior of the basin reacts to easterly winds intensification with a rising of the thermocline, resulting in a coastal upwelling response, with the consequent increase in chlorophyll-a concentration. Outside the Cariaco basin, where an open-ocean, oligothrophic regime predominates, wind intensification increases mixing of the surface layers and induces therefore a deepening of the thermocline. The seasonal cycle of the thermocline variability in the Cariaco basin is therefore related to changes in the wind field. At shorter time scales (i.e. days), it is shown that other processes, such as the influence of the meandering Caribbean Current, can also influence the thermocline variability. The model thermocline depth is shown to be in good agreement with the two main ventilation events that took place in the basin during the period of the simulation. [less ▲]

Detailed reference viewed: 69 (10 ULg)