References of "Absil, Olivier"
     in
Bookmark and Share    
Full Text
See detailUnveiling new stellar companions from the EXOZODI survey : follow up
Marion, Lindsay ULg; Absil, Olivier ULg; Ertel, Steve et al

Poster (2016, June 30)

In 2012, we have conducted a survey of nearby main sequence stars with VLTI/PIONIER to search for the presence of circumstellar dust. We focused on the use of the closure phases and the square ... [more ▼]

In 2012, we have conducted a survey of nearby main sequence stars with VLTI/PIONIER to search for the presence of circumstellar dust. We focused on the use of the closure phases and the square visibilities in a combined way to search for faint companions around the whole sample. In this process, we found four new stellar companions, for which we conducted follow-up observations in 2014. This follow up allows us to confirm the four detections, and to detect another new companion. Only the case of HD202730 remains ambiguous. [less ▲]

Detailed reference viewed: 21 (7 ULg)
Full Text
See detailThree years of harvest with the vector vortex coronagraph in the thermal infrared
Absil, Olivier ULg; Mawet, D.; Karlsson, M. et al

in Evans, C.; Simard, L.; Takami, H. (Eds.) Ground-based and Airborne Instrumentation for Astronomy VI (2016, June 26)

For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to ... [more ▼]

For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 μm). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications. [less ▲]

Detailed reference viewed: 17 (4 ULg)
Full Text
Peer Reviewed
See detailNulling Data Reduction and On-sky Performance of the Large Binocular Telescope Interferometer
Defrere, Denis ULg; Hinz, P. M.; Mennesson, B. et al

in Astrophysical Journal (2016), 824

The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high angular resolution and high-contrast infrared imaging (1.5-13 μm). In this paper, we focus on the mid ... [more ▼]

The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high angular resolution and high-contrast infrared imaging (1.5-13 μm). In this paper, we focus on the mid-infrared (8-13 μm) nulling mode and present its theory of operation, data reduction, and on-sky performance as of the end of the commissioning phase in 2015 March. With an interferometric baseline of 14.4 m, the LBTI nuller is specifically tuned to resolve the habitable zone of nearby main-sequence stars, where warm exozodiacal dust emission peaks. Measuring the exozodi luminosity function of nearby main-sequence stars is a key milestone to prepare for future exo-Earth direct imaging instruments. Thanks to recent progress in wavefront control and phase stabilization, as well as in data reduction techniques, the LBTI demonstrated in 2015 February a calibrated null accuracy of 0.05% over a 3 hr long observing sequence on the bright nearby A3V star β Leo. This is equivalent to an exozodiacal disk density of 15-30 zodi for a Sun-like star located at 10 pc, depending on the adopted disk model. This result sets a new record for high-contrast mid-infrared interferometric imaging and opens a new window on the study of planetary systems. [less ▲]

Detailed reference viewed: 29 (12 ULg)
Full Text
See detailE-ELT/METIS
Brandl, B.; Quanz, S.; Feldt, M. et al

in Simon, R.; Schaaf, R.; Stutzki, J. (Eds.) Conditions and Impact of Star Formation (2016, May 20)

The Mid-infrared E-ELT Imager and Spectrograph (METIS) will be one of the first three scientific instruments on the European Extremely Large Telescope (E-ELT). It will be the only instrument to cover the ... [more ▼]

The Mid-infrared E-ELT Imager and Spectrograph (METIS) will be one of the first three scientific instruments on the European Extremely Large Telescope (E-ELT). It will be the only instrument to cover the thermal/mid-infrared wavelength range from 3-19 μm. METIS offers a number of scientifically important observing modes, including diffraction-limited imaging, low resolution slit spectroscopy, coronagraphy, and high resolution (R ˜ 100,000) integral field spectroscopy at very high sensitivity. This paper gives a brief summary of METIS and focuses on its unique discovery space in the area of protoplanetary disks, where METIS is quite complementary to ALMA and JWST. [less ▲]

Detailed reference viewed: 7 (1 ULg)
Full Text
See detailCharacterization of the low-mass companion around HD 142527 with VLT/SINFONI
Christiaens, Valentin ULg; Casassus, Simon; Absil, Olivier ULg et al

Conference (2016, May 19)

The circumstellar disk of the Herbig Fe star HD 142527 is host to several remarkable features in the context of planetary formation, including a warped inner disk, one of the largest annular gaps, a ... [more ▼]

The circumstellar disk of the Herbig Fe star HD 142527 is host to several remarkable features in the context of planetary formation, including a warped inner disk, one of the largest annular gaps, a prominent dust trap and several spiral arms in its outer disk. A low-mass companion, HD 142527 B, was also found orbiting the primary star at only ~10 au, possibly shaping the inclined inner disk (inclined with respect to the outer disk). This study aims to provide a clarifying answer to the question of the true nature of this companion, which could help explaining its true impact on the peculiar geometry of the disk. We observed the source with VLT/SINFONI in H+K band in pupil-tracking mode. Data were then post-processed with several principal component analysis algorithms based on the principle of Angular Differential Imaging. HD 142527 B is re-detected in most of the H+K spectral channels at a signal-to-noise ratio > 3. This re-detection enables us to extract the first medium-resolution spectrum of a low-mass companion at less than 0.1'' from its central star. The best fit to our spectrum was obtained with a BT-SETTL model spectrum corresponding to a temperature of 3400+-50K and a surface gravity log(g)=2.5+-1.0. Using pre-main sequence tracks, this corresponds to an M3 star with a mass, radius and age of M_B ~0.3 M_Sun, R_B ~ 1.1 R_Sun and 3.6 Myr old, respectively. We also suggest that most of the expected circum-secondary material is at a temperature lower than 1000K, hence not emitting in H and K band, but able to explain the excess measured at L- and M-bands. Based on the new values of radius and mass of the companion, we provide a new estimate for the mass accretion rate on HD 142527 B of ~1% of the accretion rate on the primary, consistent with a non-significant detection in the Brackett-gamma line. This result confirms the efficiency of the pupil-tracking mode implemented on VLT/SINFONI for the spectral characterization of faint companions orbiting very close to their star. [less ▲]

Detailed reference viewed: 33 (2 ULg)
Full Text
See detailVortex Image Processing (VIP) package for high-contrast direct imaging
Gómez González, Carlos ULg; Absil, Olivier ULg; Wertz, Olivier ULg et al

Poster (2016, May 16)

VIP is a Python instrument-agnostic toolbox featuring a flexible framework for reproducible and robust data reduction. VIP currently supports three high-contrast imaging observational techniques: angular ... [more ▼]

VIP is a Python instrument-agnostic toolbox featuring a flexible framework for reproducible and robust data reduction. VIP currently supports three high-contrast imaging observational techniques: angular, reference-star and multi-spectral differential imaging. The code can be downloaded from our git repository on Github: http://github.com/vortex-exoplanet/VIP [less ▲]

Detailed reference viewed: 52 (6 ULg)
Full Text
Peer Reviewed
See detailLow-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences. The LLSG algorithm
Gómez González, Carlos ULg; Absil, Olivier ULg; Absil, P.-A. et al

in Astronomy and Astrophysics (2016), 589

Context. Data processing constitutes a critical component of high-contrast exoplanet imaging. Its role is almost as important as the choice of a coronagraph or a wavefront control system, and it is ... [more ▼]

Context. Data processing constitutes a critical component of high-contrast exoplanet imaging. Its role is almost as important as the choice of a coronagraph or a wavefront control system, and it is intertwined with the chosen observing strategy. Among the data processing techniques for angular differential imaging (ADI), the most recent is the family of principal component analysis (PCA) based algorithms. It is a widely used statistical tool developed during the first half of the past century. PCA serves, in this case, as a subspace projection technique for constructing a reference point spread function (PSF) that can be subtracted from the science data for boosting the detectability of potential companions present in the data. Unfortunately, when building this reference PSF from the science data itself, PCA comes with certain limitations such as the sensitivity of the lower dimensional orthogonal subspace to non-Gaussian noise. <BR /> Aims: Inspired by recent advances in machine learning algorithms such as robust PCA, we aim to propose a localized subspace projection technique that surpasses current PCA-based post-processing algorithms in terms of the detectability of companions at near real-time speed, a quality that will be useful for future direct imaging surveys. <BR /> Methods: We used randomized low-rank approximation methods recently proposed in the machine learning literature, coupled with entry-wise thresholding to decompose an ADI image sequence locally into low-rank, sparse, and Gaussian noise components (LLSG). This local three-term decomposition separates the starlight and the associated speckle noise from the planetary signal, which mostly remains in the sparse term. We tested the performance of our new algorithm on a long ADI sequence obtained on β Pictoris with VLT/NACO. <BR /> Results: Compared to a standard PCA approach, LLSG decomposition reaches a higher signal-to-noise ratio and has an overall better performance in the receiver operating characteristic space. This three-term decomposition brings a detectability boost compared to the full-frame standard PCA approach, especially in the small inner working angle region where complex speckle noise prevents PCA from discerning true companions from noise. [less ▲]

Detailed reference viewed: 60 (22 ULg)
Full Text
Peer Reviewed
See detailControlling the profile of high aspect ratio gratings in diamond
Vargas Catalan, Ernesto; Forsberg, Pontus; Absil, Olivier ULg et al

in Diamond & Related Materials (2016), 63

Diamond is an excellent material for infrared optics and for applications in harsh environments. Some of those desirable properties, i.e. hardness and chemical inertness, also make it a challenging ... [more ▼]

Diamond is an excellent material for infrared optics and for applications in harsh environments. Some of those desirable properties, i.e. hardness and chemical inertness, also make it a challenging material to machine and etch. In this study we have tested a wide range of etch parameters in an inductively coupled plasma etcher, in order to produce highly controlled, high aspect ratio gratings in diamond. We discuss the effects of pressure, bias power, and some gas mixture variation (pure oxygen and argon-oxygen) on the etch results and how it impacts the etch mask sputtering and redeposition. We also present a method for applying a fresh aluminum mask, in order to etch even deeper optical grating. Gratings with aspect ratios as high as 1:13.5 have been achieved with a 1.42 μm grating period. [less ▲]

Detailed reference viewed: 43 (4 ULg)
Full Text
Peer Reviewed
See detailPost-coronagraphic tip-tilt sensing for vortex phase masks: the QACITS technique
Huby, Elsa ULg; Baudoz, Pierre; Mawet, Dimitri et al

in Astronomy and Astrophysics (2015), 584

Small inner working angle coronagraphs, like the vortex phase mask, are essential to exploit the full potential of ground-based telescopes in the context of exoplanet detection and characterization ... [more ▼]

Small inner working angle coronagraphs, like the vortex phase mask, are essential to exploit the full potential of ground-based telescopes in the context of exoplanet detection and characterization. However, the drawback of this attractive feature is a high sensitivity to pointing errors, which degrades the performance of the coronagraph. We propose a tip-tilt retrieval technique based on the analysis of the final coronagraphic image, hereafter called Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing (QACITS). Under the assumption of small phase aberrations, we show that the behaviour of the vortex phase mask can be simply described from the entrance pupil to the Lyot stop plane by Zernike polynomials. This convenient formalism is used to establish the theoretical basis of the QACITS technique. Simulations have been performed to demonstrate the validity and limits of the technique, including the case of a centrally obstructed pupil. The QACITS technique principle is further validated by experimental results in the case of an unobstructed circular aperture. The typical configuration of the Keck telescope (24% central obstruction) has been simulated with additional high order aberrations. In these conditions, our simulations show that the QACITS technique is still adapted to centrally obstructed pupils and performs tip-tilt retrieval with a precision of $5 \times 10^{-2}$ {\lambda}/D when wavefront errors amount to {\lambda}/14 rms and $10^{-2}$ {\lambda}/D for {\lambda}/70 rms errors (with {\lambda} the wavelength and D the pupil diameter). The implementation of the QACITS technique is based on the analysis of the scientific image and does not require any modification of the original setup. Current facilities equipped with a vortex phase mask can thus directly benefit from this technique to improve the contrast performance close to the axis. [less ▲]

Detailed reference viewed: 37 (12 ULg)
Full Text
Peer Reviewed
See detailLyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph
Ruane, Garreth J.; Huby, Elsa ULg; Absil, Olivier ULg et al

in Astronomy and Astrophysics (2015), 583

The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, thereby providing a crucial ... [more ▼]

The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, thereby providing a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. We introduce a phase-only Lyot-plane optic to the vortex coronagraph that offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described and compared. Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Numerically, we achieve a contrast on the order of $10^{-6}$ for a companion with angular displacement as small as $4~\lambda/D$ with an E-ELT type aperture. Even in the presence of aberrations, improved performance is expected compared to either a conventional vortex coronagraph or optimized pupil plane phase element alone. [less ▲]

Detailed reference viewed: 55 (7 ULg)
Full Text
Peer Reviewed
See detailDirect exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data
Cantalloube, F.; Mouillet, D.; Mugnier, L. M. et al

in Astronomy and Astrophysics (2015), 582

Context. The direct detection of exoplanets with high-contrast imaging requires advanced data processing methods to disentangle potential planetary signals from bright quasi-static speckles. Among them ... [more ▼]

Context. The direct detection of exoplanets with high-contrast imaging requires advanced data processing methods to disentangle potential planetary signals from bright quasi-static speckles. Among them, angular differential imaging (ADI) permits potential planetary signals with a known rotation rate to be separated from instrumental speckles that are either statics or slowly variable. The method presented in this paper, called ANDROMEDA for ANgular Differential OptiMal Exoplanet Detection Algorithm is based on a maximum likelihood approach to ADI and is used to estimate the position and the flux of any point source present in the field of view. Aims. In order to optimize and experimentally validate this previously proposed method, we applied ANDROMEDA to real VLT/NaCo data. In addition to its pure detection capability, we investigated the possibility of defining simple and efficient criteria for automatic point source extraction able to support the processing of large surveys. Methods. To assess the performance of the method, we applied ANDROMEDA on VLT/NaCo data of TYC-8979-1683-1 which is surrounded by numerous bright stars and on which we added synthetic planets of known position and flux in the field. In order to accommodate the real data properties, it was necessary to develop additional pre-processing and post-processing steps to the initially proposed algorithm. We then investigated its skill in the challenging case of a well-known target, $\beta$ Pictoris, whose companion is close to the detection limit and we compared our results to those obtained by another method based on principal component analysis (PCA). Results. Application on VLT/NaCo data demonstrates the ability of ANDROMEDA to automatically detect and characterize point sources present in the image field. We end up with a robust method bringing consistent results with a sensitivity similar to the recently published algorithms, with only two parameters to be fine tuned. Moreover, the companion flux estimates are not biased by the algorithm parameters and do not require a posteriori corrections. Conclusions. ANDROMEDA is an attractive alternative to current standard image processing methods that can be readily applied to on-sky data. [less ▲]

Detailed reference viewed: 56 (5 ULg)
Full Text
See detailPerformance evaluation of mid-IR vortex coronagraphs with centrally obscured segmented pupils
Carlomagno, Brunella ULg; Absil, Olivier ULg; Ruane, Garreth J. et al

Poster (2015, October)

In its original design, the E-ELT/Metis instrument envisages a vortex coronagraph in the mid-IR regime for detection and characterization of exoplanets, with a contrast of 1e-4 at 2 lambda/D (~40 mas in L ... [more ▼]

In its original design, the E-ELT/Metis instrument envisages a vortex coronagraph in the mid-IR regime for detection and characterization of exoplanets, with a contrast of 1e-4 at 2 lambda/D (~40 mas in L band). The AGPM (Annular Groove Phase Mask) is a vortex phase mask with impressive characteristics: small inner working angle, high throughput, achromaticity. A non-perfectly circular pupil and non-flat input wavefront result in a starlight leakage, degrading the performance of the vortex coronagraph. In this work, we present end-to-end performance simulations using Fourier optical propagation to determine the quality of the starlight rejection obtained with an infrared vortex coronagraph. We first analyse the performance facing E-ELT pupil variations (segmentations, central obscuration, spiders, missing segments), then pointing jitter and random adaptive optics residual phase screens are introduced to derive more realistic performance. Finally, more advanced concepts of the infrared vortex coronagraph are presented, in order to compensate for performance degradation. [less ▲]

Detailed reference viewed: 32 (5 ULg)
Full Text
See detailExoplanet science with the LBTI: instrument status and plans
Defrere, Denis ULg; Hinz, P.; Skemer, A. et al

in Shaklan, Stuart (Ed.) Techniques and Instrumentation for Detection of Exoplanets VII (2015, September 16)

The Large Binocular Telescope Interferometer (LBTI) is a strategic instrument of the LBT designed for high-sensitivity, high-contrast, and high-resolution infrared (1.5-13 $\mu$m) imaging of nearby ... [more ▼]

The Large Binocular Telescope Interferometer (LBTI) is a strategic instrument of the LBT designed for high-sensitivity, high-contrast, and high-resolution infrared (1.5-13 $\mu$m) imaging of nearby planetary systems. To carry out a wide range of high-spatial resolution observations, it can combine the two AO-corrected 8.4-m apertures of the LBT in various ways including direct (non-interferometric) imaging, coronagraphy (APP and AGPM), Fizeau imaging, non-redundant aperture masking, and nulling interferometry. It also has broadband, narrowband, and spectrally dispersed capabilities. In this paper, we review the performance of these modes in terms of exoplanet science capabilities and describe recent instrumental milestones such as first-light Fizeau images (with the angular resolution of an equivalent 22.8-m telescope) and deep interferometric nulling observations. [less ▲]

Detailed reference viewed: 35 (10 ULg)
Full Text
See detailA Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency
Piron, Pierre ULg; Delacroix, Christian; Huby, Elsa ULg et al

in Shaklan, Stuart (Ed.) Techniques and Instrumentation for Detection of Exoplanets VII (2015, September 11)

The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a ... [more ▼]

The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed. [less ▲]

Detailed reference viewed: 38 (10 ULg)
Full Text
See detailOptimized focal and pupil plane masks for vortex coronagraphs on telescopes with obstructed apertures
Ruane, Garreth; Absil, Olivier ULg; Huby, Elsa ULg et al

in Shaklan, Stuart (Ed.) Techniques and Instrumentation for Detection of Exoplanets VII (2015, September 11)

We present methods for optimizing pupil and focal plane optical elements that improve the performance of vortex coronagraphs on telescopes with obstructed or segmented apertures. Phase-only and complex ... [more ▼]

We present methods for optimizing pupil and focal plane optical elements that improve the performance of vortex coronagraphs on telescopes with obstructed or segmented apertures. Phase-only and complex masks are designed for the entrance pupil, focal plane, and the plane of the Lyot stop. Optimal masks are obtained using both analytical and numerical methods. The latter makes use of an iterative error reduction algorithm to calculate "correcting" optics that mitigate unwanted diffraction from aperture obstructions. We analyze the achieved performance in terms of starlight suppression, contrast, off-axis image quality, and chromatic dependence. Manufacturing considerations and sensitivity to aberrations are also discussed. This work provides a path to joint optimization of multiple coronagraph planes to maximize sensitivity to exoplanets and other faint companions. [less ▲]

Detailed reference viewed: 39 (13 ULg)
Full Text
Peer Reviewed
See detailImpact of ηEarth on the Capabilities of Affordable Space Missions to Detect Biosignatures on Extrasolar Planets
Léger, Alain; Defrere, Denis ULg; Malbet, Fabien et al

in Astrophysical Journal (2015), 808

We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars ... [more ▼]

We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission parameters, such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4 m primary mirror, and formation-flying interferometers with 4 × 0.75 m collecting mirrors. The numbers of accessible planets are calculated as a function of η[SUB]Earth[/SUB]. When Kepler gives its final estimation for η[SUB]Earth[/SUB], the model will permit a precise assessment of the potential of each instrument. Based on current estimations, η[SUB]Earth[/SUB] = 10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ∼1.5 relevant planets, and the interferometer ∼14.0. These numbers are obtained under the major hypothesis that the exozodiacal light around the target stars is low enough for each instrument. In both cases, a prior detection of planets is assumed and a target list established. For the long-term future, building both types of spectroscopic instruments, and using them on the same targets, will be the optimal solution because they provide complementary information. But as a first affordable space mission, the interferometer looks the more promising in terms of biosignature harvest. [less ▲]

Detailed reference viewed: 30 (6 ULg)
Full Text
See detailDirect exoplanet imaging with small-angle Vortex coronagraphs
Defrere, Denis ULg; Absil, Olivier ULg; Mawet, D. et al

Conference (2015, July 16)

Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They enhance the dynamic range at very small inner working angle ... [more ▼]

Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They enhance the dynamic range at very small inner working angle (down to the diffraction limit of the telescope) and provide a clear 360 degree discovery space for high-contrast direct imaging of exoplanets. In this talk, we will report on the first scientific results obtained with Vortex coronagraphs installed on 10-m class telescopes (i.e., the VLT and the LBT) and on the recent installation of one Vortex at Keck. We will describe the in-lab and on-sky performance of the Vortex, and describe the lessons learned after a few years of operation. Finally, we will discuss the prospects of our vortices for future extremely large telescopes and space missions. [less ▲]

Detailed reference viewed: 15 (2 ULg)
Full Text
See detailAn Unbiased Near-infrared Interferometric Survey for Hot Exozodiacal Dust
Ertel, S.; Augereau, J.-C.; Absil, Olivier ULg et al

in The Messenger (2015), 159

Exozodiacal dust is warm or hot dust found in the inner regions of planetary systems orbiting main sequence stars, in or around their habitable zones. The dust can be the most luminous component of ... [more ▼]

Exozodiacal dust is warm or hot dust found in the inner regions of planetary systems orbiting main sequence stars, in or around their habitable zones. The dust can be the most luminous component of extrasolar planetary systems, but predominantly emits in the near- to mid-infrared where it is outshone by the host star. Interferometry provides a unique method of separating this dusty emission from the stellar emission. The visitor instrument PIONIER at the Very Large Telescope Interferometer (VLTI) has been used to search for hot exozodiacal dust around a large sample of nearby main sequence stars. The results of this survey are summarised: 9 out of 85 stars show excess exo- zodiacal emission over the stellar photospheric emission. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailThe VLTI/PIONIER near-infrared interferometric survey of southern T Tauri stars. I. First results
Anthonioz, F.; Menard, F.; Pinte, C. et al

in Astronomy and Astrophysics (2015), 574

Context. The properties of the inner disks of bright Herbig AeBe stars have been studied with near-infrared (NIR) interferometry and high resolution spectroscopy. The continuum (dust) and a few molecular ... [more ▼]

Context. The properties of the inner disks of bright Herbig AeBe stars have been studied with near-infrared (NIR) interferometry and high resolution spectroscopy. The continuum (dust) and a few molecular gas species have been studied close to the central star; however, sensitivity problems limit direct information about the inner disks of the fainter T Tauri stars. <BR /> Aims: Our aim is to measure some of the properties (inner radius, brightness profile, shape) of the inner regions of circumstellar disk surrounding southern T Tauri stars. <BR /> Methods: We performed a survey with the VLTI/PIONIER recombiner instrument at H-band of 21 T Tauri stars. The baselines used ranged from 11 m to 129 m, corresponding to a maximum resolution of ~3 mas (~0.45 au at 150 pc). <BR /> Results: Thirteen disks are resolved well and the visibility curves are fully sampled as a function of baseline in the range 45-130 m for these 13 objects. A simple qualitative examination of visibility profiles allows us to identify a rapid drop-off in the visibilities at short baselines(<10 Mlambda) in 8 resolved disks. This is indicative of a significant contribution from an extended (R> 3 au, at 150 pc) contribution of light from the disk. We demonstrate that this component is compatible with scattered light, providing strong support to an earlier prediction. The amplitude of the drop-off and the amount of dust thermal emission changes from source to source suggesting that each disk is different. A by-product of the survey is the identification of a new milli-arcsec separation binary: WW Cha. Spectroscopic and interferometric data of AK Sco have also been fitted with a binary + disk model. <BR /> Conclusions: The visibility data are reproduced well when thermal emission and scattering from dust are fully considered. The inner radii measured are consistent with the expected dust sublimation radii. The modelling of AK Sco suggests a likely coplanarity between the disk and the binary's orbital plane. [less ▲]

Detailed reference viewed: 26 (3 ULg)
Full Text
See detailAn update on the VORTEX project
Absil, Olivier ULg

Conference (2015, January 21)

Detailed reference viewed: 9 (1 ULg)