References of "Absil, Olivier"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Search for Worlds Like Our Own
Fridlund, Malcolm; Eiroa, Carlos; Henning, Thomas et al

in Astrobiology (2010), 10(1), 5-17

The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets -- particularly, their evolution, their atmospheres, and their ability to host life ... [more ▼]

The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets -- particularly, their evolution, their atmospheres, and their ability to host life -- constitute a significant problem. The quest for other worlds as abodes of life has been one of mankind's great questions for several millennia. For instance, as stated by Epicurus 300 BC: Other worlds, with plants and other living things, some of them similar and some of them different from ours, must exist. Demokritos from Abdera (460-370 BC), the man who invented the concept of indivisible small parts - atoms - also held the belief that other worlds exist around the stars and that some of these worlds may be inhabited by life-forms. The idea of the plurality of worlds and of life on them has since been held by scientists like Johannes Kepler and William Herschel, among many others. Here, one must also mention Giordano Bruno. Born in 1548, Bruno studied in France and came into contact with the teachings of Nicolas Copernicus. He wrote the book De l'Infinito, Universo e Mondi in 1584, in which he claimed that the Universe was infinite, that it contained an infinite amount of worlds like Earth, and that these worlds were inhabited by intelligent beings. At the time, this was extremely controversial, and eventually Bruno was arrested by the church and burned at the stake in Rome in 1600, as a heretic, for promoting this and other equally confrontational issues (though it is unclear exactly which idea was the one that ultimately brought him to his end). In all the aforementioned cases, the opinions and results were arrived at through reasoning--not by experiment. We have only recently acquired the technological capability to observe planets orbiting stars other than 6our Sun; acquisition of this capability has been a remarkable feat of our time. We show in this introduction to the Habitability Primer that mankind is at the dawning of an age when, by way of the scientific method and 21st-century technology, we will be able to answer this fascinating controversial issue that has persisted for at least 2500 years. [less ▲]

Detailed reference viewed: 26 (7 ULg)
Full Text
Peer Reviewed
See detailNulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions
Defrere, Denis ULg; Absil, Olivier ULg; den Hartog, Roland et al

in Astronomy and Astrophysics (2010), 509

Earth-sized planets around nearby stars are being detected for the first time by ground-based radial velocity and space-based transit surveys. This milestone is opening the path towards the definition of ... [more ▼]

Earth-sized planets around nearby stars are being detected for the first time by ground-based radial velocity and space-based transit surveys. This milestone is opening the path towards the definition of missions able to directly detect the light from these planets, with the identification of bio-signatures as one of the main objectives. In that respect, both ESA and NASA have identified nulling interferometry as one of the most promising techniques. The ability to study distant planets will however depend on exozodiacal dust clouds surrounding the target stars. In this paper, we assess the impact of exozodiacal dust clouds on the performance of an infrared nulling interferometer in the Emma X-array configuration. For the nominal mission architecture with 2-m aperture telescopes, we found that point-symmetric exozodiacal dust discs about 100 times denser than the solar zodiacal cloud can be tolerated in order to survey at least 150 targets during the mission lifetime. Considering modeled resonant structures created by an Earth-like planet orbiting at 1 AU around a Sun-like star, we show that the tolerable dust density for planet detection goes down to about 15 times the solar zodiacal density for face-on systems and decreases with the disc inclination. The upper limits on the tolerable exozodiacal dust density derived in this study must be considered as rather pessimistic, but still give a realistic estimation of the typical sensitivity that we will need to reach on exozodiacal discs in order to prepare the scientific programme of future Earth-like planet characterisation missions. [less ▲]

Detailed reference viewed: 20 (3 ULg)
Full Text
See detailAladdin nulling instrument
Barillot, Marc; Coudé Du Foresto, Vincent; Surdej, Jean ULg et al

in Spinoglio, L.; Epchtein, N. (Eds.) 3rd ARENA Conference: An Astronomical Observatory at CONCORDIA (Dome C, Antarctica) (2010)

The ALADDIN project aims at detecting warm dust populations around nearby main sequence stars. In order to achieve the significantly improved sensitivity with respect to existing instruments, the ... [more ▼]

The ALADDIN project aims at detecting warm dust populations around nearby main sequence stars. In order to achieve the significantly improved sensitivity with respect to existing instruments, the architecture of the system is focused and optimised for the mission: ALADDIN implements the nulling interferometry technique at the focal plane of a 2-telescope interferometer mounted on a rotating structural beam. Concerning the beam combining nulling instrument, the ALADDIN design is inherited from a Definition Study of the VLTI/GENIE instrument. In this paper, we demonstrate how the ALADDIN instrument preliminary definition can be made simpler and more representative of a space instrument than GENIE thanks to both the outstanding atmospheric properties of Dome C and the dedicated architecture of the system. Finally, we discuss the compatibility of the instrument with the Antarctic environment and constraints, and underline the experimental and industrial know-how learnt from the MAII and PERSEE nulling breadboards in which our Team is also involved. [less ▲]

Detailed reference viewed: 333 (6 ULg)
Full Text
See detailExozodiacal discs with ALADDIN: how faint can we detect them?
Absil, Olivier ULg; Coudé Du Foresto; Barillot, M. et al

in Spinoglio, L.; Epchtein, N. (Eds.) 3rd ARENA Conference: An Astronomical Observatory at CONCORDIA (Dome C, Antarctica) (2010)

In this paper, we describe the expected performance of ALADDIN, a nulling interferometer project optimised for operation at Dome C. After reviewing the main atmospheric parameters pertaining to infrared ... [more ▼]

In this paper, we describe the expected performance of ALADDIN, a nulling interferometer project optimised for operation at Dome C. After reviewing the main atmospheric parameters pertaining to infrared interferometry on the high Antarctic plateau, we shortly describe the ALADDIN instrument and compute its estimated performance in terms of the smallest exozodiacal dust disc density that can be detected. Our estimations are based on a thorough end-to-end software simulator previously developed for the GENIE nulling interferometer project at VLTI. We then propose a possible mission scenario, where the southern target stars of future exo-Earth characterisation missions can be surveyed for the presence of bright exozodiacal discs (>50 zodi) within one winter-over at Concordia. [less ▲]

Detailed reference viewed: 53 (9 ULg)
Full Text
See detailCompared sensitivity of VLT, JWST and ELT for direct exoplanet detection in nearby stellar moving groups
Hanot, Charles ULg; Absil, Olivier ULg; Surdej, Jean ULg et al

in Villegas, Daniela; Kissler-Patig, Markus (Eds.) JWST and the ELTs: An ideal Combination (2010)

In the context of exoplanet detection, a large majority of the 400 detected exoplanets have been found by indirect methods. Today, progress in the field of high contrast imaging has allowed direct images ... [more ▼]

In the context of exoplanet detection, a large majority of the 400 detected exoplanets have been found by indirect methods. Today, progress in the field of high contrast imaging has allowed direct images of several exoplanetary systems to be taken (cf. HR 8799, Fomalhaut). In the near future, several new instruments are going to dramatically improve our sensitivity to exoplanet detection. Among these, SPHERE ( Spectro Polarimetric High contrast Exoplanet REsearch ) at the VLT, MIRI ( Mid Infra-Red Instrument) onboard JWST and the ELT will be equipped with coronagraphs to reveal faint objects in the vicinity of nearby stars. We made use of the Lyon group (COND) evolutionary models of young (sub-) stellar objects and exoplanets to compare the sensitivity of these different instruments using their estimated coronagraphic profiles. From this comparison, we present a catalogue of targets which are particularilly well suited for the different instruments. [less ▲]

Detailed reference viewed: 23 (3 ULg)
Full Text
Peer Reviewed
See detailAn Interferometric Study of the Fomalhaut Inner Debris Disk. I. Near-Infrared Detection of Hot Dust with VLTI/VINCI
Absil, Olivier ULg; Mennesson, Bertrand; Le Bouquin, Jean-Baptiste et al

in Astrophysical Journal (2009), 704

The innermost parts of dusty debris disks around main-sequence stars are currently poorly known due to the high contrast and small angular separation with their parent stars. Using near-infrared ... [more ▼]

The innermost parts of dusty debris disks around main-sequence stars are currently poorly known due to the high contrast and small angular separation with their parent stars. Using near-infrared interferometry, we aim to detect the signature of hot dust around the nearby A4 V star Fomalhaut, which has already been suggested to harbor a warm dust population in addition to a cold dust ring located at about 140 AU. Archival data obtained with the VINCI instrument at the VLTI are used to study the fringe visibility of the Fomalhaut system at projected baseline lengths ranging from 4 m to 140 m in the K band. A significant visibility deficit is observed at short baselines with respect to the expected visibility of the sole stellar photosphere. This is interpreted as the signature of resolved circumstellar emission, producing a relative flux of 0.88% ± 0.12% with respect to the stellar photosphere. While our interferometric data cannot directly constrain the morphology of the excess emission source, complementary data from the literature allow us to discard an off-axis point-like object as the source of circumstellar emission. We argue that the thermal emission from hot dusty grains located within 6 AU from Fomalhaut is the most plausible explanation for the detected excess. Our study also provides a revised limb-darkened diameter for Fomalhaut (theta_LD = 2.223 ± 0.022 mas), taking into account the effect of the resolved circumstellar emission. Based on observations made with ESO Telescopes at the Paranal Observatory (public VINCI commissioning data). [less ▲]

Detailed reference viewed: 58 (8 ULg)
Full Text
See detailP3 panel summary: exozodiacal dust disks
Absil, Olivier ULg

Scientific conference (2009, September 18)

When observing an extrasolar planetary system, the most luminous component after the star itself is generally the light scattered and/or thermally emitted by a population of micron-sized dust grains ... [more ▼]

When observing an extrasolar planetary system, the most luminous component after the star itself is generally the light scattered and/or thermally emitted by a population of micron-sized dust grains. These grains are expected to be continuously replenished by the collisions and evaporation of larger bodies just as in our solar zodiacal cloud. Exozodiacal clouds (\exozodis") must therefore be seriously taken into account when attempting to directly image faint Earth-like planets (exoEarths, for short). This paper summarizes the oral contributions and discussions that took place during the Satellite Meeting on exozodiacal dust disks, in an attempt to address the following two questions: Do we need to solve the exozodi question? If yes, how to best solve it? [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
See detailMulti-aperture imaging of extrasolar planetary systems (invited review)
Absil, Olivier ULg

Scientific conference (2009, September 14)

Space‐based nulling interferometry has been identified since 1978 as a promising technique to detect and characterize extrasolar Earth‐like planets. In this talk, I will review the evolution of the ... [more ▼]

Space‐based nulling interferometry has been identified since 1978 as a promising technique to detect and characterize extrasolar Earth‐like planets. In this talk, I will review the evolution of the multi‐aperture concepts dedicated to Earth‐like planet imaging during the last 30 years, and discuss the future prospects in this field. In particular, I will describe the proposed architecture for the Darwin/TPF‐I mission, which has resulted from a common optimization effort by ESA and NASA and from various industrial studies during the past decade. The main scientific and technical hard points will be critically discussed. This talk will also review the precursor instruments (present and future) that could enable future flagship interferometric missions similar to Darwin/TPF‐I. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
See detailExozodiacal discs with ALADDIN: how deep can we go?
Absil, Olivier ULg

Scientific conference (2009, May 12)

Studying the warm inner part of debris discs—-the extrasolar counterparts of the zodiacal dust cloud-—is of prime importance to characterise the global architecture of planetary systems. Furthermore, the ... [more ▼]

Studying the warm inner part of debris discs—-the extrasolar counterparts of the zodiacal dust cloud-—is of prime importance to characterise the global architecture of planetary systems. Furthermore, the possible presence of large quantities of warm dust around nearby main sequence stars is unanimously recognised as a major threat for future space missions dedicated to the direct detection and characterisation of Earth-like planets (either with visible/near-IR coronagraphy or mid-infrared interferometry). As of today, exozodiacal discs have been directly resolved around very few main sequence stars, at a sensitivity level of about 1000 times our zodiacal dust cloud. In this context, the ALADDIN project aims at detecting warm dust populations around nearby main sequence stars with significantly improved sensitivity. In this paper, we present a thorough study of ALADDIN's estimated performance. End-to-end simulations taking into account the specific characteristics of the Antarctic environment have been carried out, showing that a nulling interferometer coupled to a pair of 1-m class telescopes in Antarctica would perform significantly better than a similar instrument working on 8-m class telescopes in a temperate site. Exozodiacal dust density levels as low as 50 times the Solar zodiacal cloud are within reach around most Solar-type stars within 25 pc. Such performance would bring the study of exozodiacal light to a new level, and enable a fine study of terrestrial planet environments. Suitable candidate targets for direct Earth-like planet detection could then be identified among nearby main sequence stars in the Southern hemisphere, and the design of future space missions tuned to cope with the statistical occurrence of bright exozodiacal discs. [less ▲]

Detailed reference viewed: 7 (1 ULg)
Full Text
Peer Reviewed
See detailThe spin-orbit alignment of the Fomalhaut planetary system probed by optical long baseline interferometry
Le Bouquin, J.-B.; Absil, Olivier ULg; Benisty, M. et al

in Astronomy and Astrophysics (2009), 498

Aims. We discuss the spin-orbit orientation of the Fomalhaut planetary system composed of a central A4V star, a debris disk, and a recently discovered planetary companion. Methods: We use spectrally ... [more ▼]

Aims. We discuss the spin-orbit orientation of the Fomalhaut planetary system composed of a central A4V star, a debris disk, and a recently discovered planetary companion. Methods: We use spectrally resolved, near-IR long baseline interferometry to obtain precise spectro-astrometric measurements across the Br-gamma absorption line. The achieved astrometric accuracy of ±3 muas and the spectral resolution R=1500 from the AMBER/VLTI instrument allow us to spatially and spectrally resolve the rotating photosphere. Results: We find a position angle PA(star)=65° ± 3° for the stellar rotation axis, perpendicular to the literature measurement for the disk position angle (PA(disk)=156.0 ° ± 0.3°). This is the first time such a test could be performed for a debris disk, and in a non-eclipsing system. Additionally, our measurements suggest unexpected backward-scattering properties for the circumstellar dust grains. Conclusions: Our observations validate the standard scenario for star and planet formation in which the angular momentum of the planetary systems are expected to be colinear with the stellar spins. Based on observations collected at the VLTI (ESO Paranal, Chile), with the 082.C-0376 program from the AMBER Guaranteed Time of the Osservatorio Astrofisico di Arcetri (INAF, Italy). [less ▲]

Detailed reference viewed: 104 (16 ULg)
See detailHot dust in the inner parts of circumstellar debris discs
Absil, Olivier ULg

Scientific conference (2009, April 01)

Studying the warm inner part of debris discs—the extrasolar counterparts of the zodiacal dust cloud—is of prime importance to characterize the global architecture of planetary systems. Because of the high ... [more ▼]

Studying the warm inner part of debris discs—the extrasolar counterparts of the zodiacal dust cloud—is of prime importance to characterize the global architecture of planetary systems. Because of the high contrast and small angular separation between the star and the exozodiacal light, high-precision infrared interferometry is the best-suited tool to carry out such observations. In this paper, we review the first direct detection of an exozodiacal disc recently reported around Vega by Absil et al. (2006), and discuss the currently on-going observing efforts in this domain. We show how interferometric data can constrain the composition and the dynamics of extrasolar planetary systems, and thereby put useful constraints on the presence of small bodies and/or giant planets. First statistical trends for high-density exozodiacal discs towards a small sample of nearby main sequence stars are presented. Finally, we briefly discuss how next generation interferometric instruments could change our view of debris discs, pushing the detection limit towards meaningful density levels in the context of future life-finding missions such as Darwin/TPF. [less ▲]

Detailed reference viewed: 4 (1 ULg)
Full Text
See detailExoplanet Characterization and the Search for Life
Kasting, James; Traub, W.; Roberge, A. et al

E-print/Working paper (2009)

Over 300 extrasolar planets (exoplanets) have been detected orbiting nearby stars. We now hope to conduct a census of all planets around nearby stars and to characterize their atmospheres and surfaces ... [more ▼]

Over 300 extrasolar planets (exoplanets) have been detected orbiting nearby stars. We now hope to conduct a census of all planets around nearby stars and to characterize their atmospheres and surfaces with spectroscopy. Rocky planets within their star's habitable zones have the highest priority, as these have the potential to harbor life. Our science goal is to find and characterize all nearby exoplanets; this requires that we measure the mass, orbit, and spectroscopic signature of each one at visible and infrared wavelengths. The techniques for doing this are at hand today. Within the decade we could answer long-standing questions about the evolution and nature of other planetary systems, and we could search for clues as to whether life exists elsewhere in our galactic neighborhood. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
See detailTechnology for a Mid-IR Flagship Mission to Characterize Earth-like Exoplanets
Lawson, P. R.; Absil, Olivier ULg; Akeson, R. L. et al

E-print/Working paper (2009)

The exploration of Earth-like exoplanets will be enabled at mid-infrared wavelengths through technology and engineering advances in nulling interferometry and precision formation flying. Nulling ... [more ▼]

The exploration of Earth-like exoplanets will be enabled at mid-infrared wavelengths through technology and engineering advances in nulling interferometry and precision formation flying. Nulling interferometry provides the dynamic range needed for the detection of biomarkers. Formation flying provides the angular resolution required in the mid-infrared to separately distinguish the spectra of planets in multi-planet systems. The flight performance requirements for nulling have been met and must now be validated in a flight-like environment. Formation-flying algorithms have been demonstrated in the lab and must now be validated in space. Our proposed technology program is described. [less ▲]

Detailed reference viewed: 28 (4 ULg)
Full Text
Peer Reviewed
See detailDarwin-A Mission to Detect and Search for Life on Extrasolar Planets
Cockell, C. S.; Léger, A.; Fridlund, M. et al

in Astrobiology (2009), 9(1)

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In ... [more ▼]

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO[SUB]2[/SUB], H[SUB]2[/SUB]O, CH[SUB]4[/SUB], and O[SUB]3[/SUB]. Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public. [less ▲]

Detailed reference viewed: 186 (18 ULg)
See detailPoussières chaudes dans les systèmes planétaires extrasolaires
Absil, Olivier ULg

Scientific conference (2009, March 10)

Detailed reference viewed: 1 (0 ULg)
Full Text
See detailInfrared Imaging
Danchi, William; Lawson, Peter; Absil, Olivier ULg et al

in Lawson, P. R.; Traub, W. A.; Unwin, S. C. (Eds.) Exoplanet Community Report (2009)

A mid‐infrared mission would enable the detection of biosignatures of Earth‐like exoplanets around more than 150 nearby stars. The mid‐infrared spectral region is attractive for characterizing exoplanets ... [more ▼]

A mid‐infrared mission would enable the detection of biosignatures of Earth‐like exoplanets around more than 150 nearby stars. The mid‐infrared spectral region is attractive for characterizing exoplanets because contrast with the parent star brightness is more favorable than in the visible (10 million vs. 10 billion), and because mid‐infrared light probes deep into a planet’s troposphere. Furthermore, the mid‐infrared offers access to several strong molecular features that are key signs of life, and also provides a measure of the effective temperature and size of a planet. Taken together, an infrared mission plus a visible one would provide a nearly full picture of a planet, including signs of life; with a measure of mass from an astrometric mission, we would have a virtually complete picture. A small infrared mission would have several telescopes that are rigidly connected, with a science return from the detection and characterization of super‐Earth sized to larger planets near the HZ, plus a direct measure of the exozodi brightness in the HZ. In a large infrared mission, with formation‐flying telescopes, planets from an Earth‐twin and upwards in mass could be detected and characterized, as well as the exozodi. If proceeded by an astrometric mission, the detection phase could be skipped and the mission devoted to characterization, as in the visible case; lacking an astrometric mission, an infrared one could proceed alone, as was discussed for a visible coronograph, and with similar caveats. The technology needed for a large formation‐flying mission is similar to that for a small connected‐element one (e.g., cryogenics and detectors), with the addition of formationflying technology. The technology is now in hand to implement a probe‐scale mission; starlight suppression has even been demonstrated to meet the requirements of a flagship mission. However, additional development of formation‐flying technology is needed, particularly in‐space testing of sensors and guidance, navigation, and control algorithms. [less ▲]

Detailed reference viewed: 59 (12 ULg)
Full Text
See detailExozodiacal Disks
Hinz, Phillip; Millan-Gabet, Rafael; Absil, Olivier ULg

in Lawson, P. R.; Traub, W. A.; Unwin, S. C. (Eds.) Exoplanet Community Report (2009)

From the viewpoint of direct imaging of exoplanets in the visible or infrared, exozodi dust disks can be both good and bad. An exozodi disk is good if it has structures (cleared regions or resonant clumps ... [more ▼]

From the viewpoint of direct imaging of exoplanets in the visible or infrared, exozodi dust disks can be both good and bad. An exozodi disk is good if it has structures (cleared regions or resonant clumps) that suggest the gravitational presence of planets, however it is bad if the dust fills the instrumental field of view with brightness that swamps the signal from a planet. Unfortunately, it takes very little dust to compete with or overwhelm the light from a planet: an Earth‐twin signal is roughly equal to a 0.1‐AU patch of Solar‐System‐twin zodi, in the visible or infrared. Thus, exozodi measurements are extremely important, but they are also difficult to make. Current limits of detection, in units of the Solar‐System brightness, are a few hundred using the Spitzer Space Telescope, about one hundred with the Keck Interferometer (KI), and about 10 expected from the Large Binocular Telescope Interferometer (LBTI). A small coronagraph or small interferometer in space is needed in order to reach the sensitivity required to detect the glow at the level of our own Solar System. [less ▲]

Detailed reference viewed: 27 (8 ULg)
Full Text
Peer Reviewed
See detailPEGASE, an infrared interferometer to study stellar environments and low mass companions around nearby stars
Ollivier, M.; Absil, Olivier ULg; Allard, F. et al

in Experimental Astronomy (2009), 23

PEGASE is a mission dedicated to the exploration of the environment (including habitable zone) of young and solar-type stars (particularly those in the DARWIN catalogue) and the observation of low mass ... [more ▼]

PEGASE is a mission dedicated to the exploration of the environment (including habitable zone) of young and solar-type stars (particularly those in the DARWIN catalogue) and the observation of low mass companions around nearby stars. It is a space interferometer project composed of three free flying spacecraft, respectively featuring two 40 cm siderostats and a beam combiner working in the visible and near infrared. It has been proposed to ESA as an answer to the first ``Cosmic Vision'' call for proposals, as an M mission. The concept also enables full-scale demonstration of space nulling interferometry operation for DARWIN. [less ▲]

Detailed reference viewed: 69 (9 ULg)
Full Text
Peer Reviewed
See detailDarwin---an experimental astronomy mission to search for extrasolar planets
Cockell, Charles S; Herbst, Tom; Léger, Alain et al

in Experimental Astronomy (2009), 23

As a response to ESA call for mission concepts for its Cosmic Vision 2015--2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for ... [more ▼]

As a response to ESA call for mission concepts for its Cosmic Vision 2015--2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for life on them. In this paper, we describe different characteristics of the instrument. [less ▲]

Detailed reference viewed: 67 (2 ULg)
Full Text
Peer Reviewed
See detailDust in the inner regions of debris disks around A stars
Akeson, R. L.; Ciardi, D. R.; Millan-Gabet, R. et al

in Astrophysical Journal (2009), 691

We present infrared interferometric observations of the inner regions of two A-star debris disks, beta Leo and zeta Lep, using the FLUOR instrument at the CHARA interferometer on both short (30 m) and ... [more ▼]

We present infrared interferometric observations of the inner regions of two A-star debris disks, beta Leo and zeta Lep, using the FLUOR instrument at the CHARA interferometer on both short (30 m) and long (> 200 m) baselines. For the target stars, the short-baseline visibilities are lower than expected for the stellar photosphere alone, while those of a check star, delta Leo, are not. We interpret this visibility offset of a few percent as a near-infrared (NIR) excess arising from dust grains which, due to the instrumental field of view, must be located within several AU of the central star. For beta Leo, the NIR excess-producing grains are spatially distinct from the dust which produces the previously known mid-infrared (MIR) excess. For zeta Lep, the NIR excess may be spatially associated with the MIR excess-producing material. We present simple geometric models which are consistent with the NIR and MIR excesses and show that for both objects, the NIR-producing material is most consistent with a thin ring of dust near the sublimation radius, with typical grain sizes smaller than the nominal radiation pressure blowout radius. Finally, we discuss possible origins of the NIR-emitting dust in the context of debris disk evolution models. [less ▲]

Detailed reference viewed: 20 (1 ULg)