References of "Zune, Quentin"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFungal biofilm reactor improves the productivity of hydrophobin HFBII
Khalesi, Mohammadreza; Zune, Quentin ULg; Telek, Samuel ULg et al

in Biochemical Engineering Journal (in press)

Production and purification of hydrophobin HFBII has recently been the subject of intensive research, but the yield of production needs to be further improved for a generic use of this molecule at ... [more ▼]

Production and purification of hydrophobin HFBII has recently been the subject of intensive research, but the yield of production needs to be further improved for a generic use of this molecule at industrial scale. In a first step, the influence of different carbon sources on the growth of Trichoderma reesei and the production of HFBII was investigated. The optimum productivity was obtained by using 40 g/L lactose. Carbon starvation and excretion of extracellular enzyme were determined as two main conditions for the production of HFBII. In the second phase, and according to the physiological mechanisms observed during the screening phase, a bioreactor set up has been designed and two modes of cultures have been investigated, i.e. the classical submerged fermentation and a fungal biofilm reactor. In this last set-up, the broth is continuously recirculated on a metal packing exhibiting a high specific surface. In this case, the fungal biomass was mainly attached to the metal packing, leading to a simplification of downstream processing scheme. More importantly, the HFBII concentration increased up to 48.6 ± 6.2 mg/L which was 1.8 times higher in this reactor configuration and faster than the submerged culture. X-ray tomography analysis shows that the biofilm overgrowth occurs when successive cultures are performed on the same packing. However, this phenomenon has no significant influence on the yield of HFBII, suggesting that this process could be operated in continuous mode. Protein hydrolysis during stationary phase was observed by MALDI-TOF analysis according to the removal of the last amino acid from the structure of HFBII after 48 h from the beginning of fermentation in biofilm reactor. Hopefully this modification does not lead to alternation of the main physicochemical properties of HFBII. [less ▲]

Detailed reference viewed: 38 (20 ULg)
Full Text
Peer Reviewed
See detailDesign of a fungal biofilm reactor for recombinant protein production from Aspergillus oryzae
Zune, Quentin ULg; Delepierre, Anissa ULg; Bauwens, Julien ULg et al

Poster (2014, September 07)

Fungi are microorganisms exhibiting high secretive power of various metabolites and have the ability to perform post-translational modifications during protein synthesis. In the field of fermentation ... [more ▼]

Fungi are microorganisms exhibiting high secretive power of various metabolites and have the ability to perform post-translational modifications during protein synthesis. In the field of fermentation industry, they are ideal hosts for secondary metabolites and recombinant protein production. At the industrial-scale, equipments usually required for solid-state or submerged fermentation of filamentous fungi have demonstrated their limitations in terms of productivity, mass transfers or products recovery (1, 2). Recently, fungal biofilm reactors were designed to combine advantages from submerged and solid-state culture and reveal their usefulness for greater secondary metabolites production relative to submerged culture conditions (3). In our work, we propose the design of a fungal biofilm reactor for a recombinant protein production from an Aspergillus oryzae strain containing a GFP reporter gene system under the control of a promoter specifically induced in solid-state conditions. The fungal biofilm reactor is composed of a metal structured packing, having the function of inert support for biofilm growth, immerged or aspersed by a liquid medium. Whereas recombinant protein production is not significantly different at the flask-scale between submerged and biofilm conditions, productivity is higher in the submerged conditions at the bioreactor-scale. Presence of recombinant proteins entrapped in the biofilm matrix highlights a diffusion constraint and a lower mass transfer in our fungal biofilm reactor. However, persistence of a free liquid biomass of low viscosity and fungal biomass retention on the support are attractive for the implementation of a continuous process in our fungal biofilm reactor. Further studies will consider a 2-D proteomic comparison of the extracellular medium from fungal biofilm reactor and submerged culture conditions in order to better understand proteins secretion and identify over-expressed proteins in biofilm conditions. [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailImplications of microbial phenotypic heterogeneity in large-scale bioprocessing conditions
Delvigne, Frank ULg; Gorret, Nathalie; Molina-Jouve, Carole et al

Conference (2014, September)

Detailed reference viewed: 13 (4 ULg)
Full Text
Peer Reviewed
See detailIMPLEMENTATION OF A METAL STRUCTURED PACKING IN A FUNGAL BIOFILM REACTOR FOR THE PRODUCTION OF A RECOMBINANT PROTEIN BY ASPERGILLUS ORYZAE
Zune, Quentin ULg; Delepierre, Anissa; Toye, Dominique ULg et al

in Communications in Agricultural and Applied Biological Sciences (2014, February 07)

Detailed reference viewed: 62 (7 ULg)
Full Text
Peer Reviewed
See detailHigh-energy X-ray tomography analysis of a metal packing biofilm reactor for the production of lipopeptides by Bacillus subtilis
Zune, Quentin ULg; Soyeurt, Delphine; Toye, Dominique ULg et al

in Journal of Chemical Technology & Biotechnology (2014), 89

BACKGROUND: Whereas multi-species biofilm reactors are commonly used for the treatment of liquid and solid wastes, new strategies are progressing for the development of single species biofilm for the ... [more ▼]

BACKGROUND: Whereas multi-species biofilm reactors are commonly used for the treatment of liquid and solid wastes, new strategies are progressing for the development of single species biofilm for the production of high-value metabolites. Technically, this new concept relies on the design of bioreactors able to promote biofilm formation and on the identification of the key physico-chemical parameters involved in biofilm formation. RESULTS: An experimental setting comprising a liquid continuously recirculated on a metal structured packing has been used to promote Bacillus subtilis GA1 biofilm formation. The colonization of the packing has been visualized non-invasively by X-ray tomography. This analysis revealed an uneven, conical, distribution of the biofilm inside the packing. Compared with a submerged culture carried out in a stirred tank reactor, significant modification of the lipopeptide profile has been observed in the biofilm reactorwith the disappearance of fengycin and iturin fractions and an increase of the surfactin fraction. In addition, considering the biofilm reactor design, no foam formation has been observed during the culture. CONCLUSIONS: The configuration of this biofilm reactor set-up allows for a higher surfactin production by comparison with a submerged culture while avoiding foam formation. Additionally, scale-up could easily be performed by increasing the number of packing elements. [less ▲]

Detailed reference viewed: 59 (31 ULg)
Peer Reviewed
See detailUse of on-line flow cytometry to detect segregation in the microbial population
Brognaux, Alison ULg; Zune, Quentin ULg; Han, Shanshan et al

Poster (2013, October 08)

Detailed reference viewed: 29 (9 ULg)
Full Text
Peer Reviewed
See detailBiofilm formation on metal structured packing for the production of high added value biomolecules
Zune, Quentin ULg; Zune, Quentin ULg; Toye, Dominique ULg et al

in Récents Progrès en Génie des Procédés (2013)

Many white biotechnology bioprocesses apply techniques from chemical engineering based on bioreactors with mechanical stirring system commonly employed in pharmaceutical sector, food industry or energy ... [more ▼]

Many white biotechnology bioprocesses apply techniques from chemical engineering based on bioreactors with mechanical stirring system commonly employed in pharmaceutical sector, food industry or energy field (Dasilva, 2004). As in chemical engineering, scale-up of these bioprocesses induces physicochemical constraints that affect physiological pathways and decrease performances. In this context, it is essential to think new bioprocesses better suited to physiology of microorganisms, minimizing physicochemical constraints. The aim of this work consists to use stainless steel structured packing (SSP) with high specific area (500-750 m²/m³) as inert support for biomass immobilization in order to produce high added value biomolecules. These bioreactors are biocatalysts in which microbial system is immobilized biomass on the form of a biofilm performing bioconversion of a substrate into a specific product (Rosche, 2009). In this study, an experimental setting containing a SSP reproduces solid-state fermentation (SSF) like conditions. Two well known microorganisms for their ability to form biofilm and secrete metabolites are tested in the experimental setting : Bacillus subtilis for its lipopeptides and Aspergillus oryzae for its glucoamylase. Effectiveness of the bioprocess in term of dynamic of the excretion of the target biomolecule is compared with a classical submerged culture (SmF). For lipopeptides production from B. subtilis, SSP is located in a 20L bioreactor continuously aspersed by liquid medium required to the growth of the biofilm. In the case of A. oryzae, the SSP is partially immerged in a 250 mL shake flask. X-ray tomography of the SSP allows non-invasive visualization and quantification of biofilm repartition inside the support. Implementation of SSP permits almost total immobilization of biomass on the form of a mono-species biofilm to the detriment of the liquid phase. Processing of images obtained by X-ray tomography of the SSP provides relevant information for the optimization of the bioprocess. For both microorganism species, results indicate the influence of parameters such as hydrodynamics, aeration rate and microorganism specificity, on the biofilm morphology inside the support and the performances of the bioprocess. SSF-like conditions in the experimental setting lead to technologic progress, such as absence of foam formation, persistence of the microbial system, and improve the dynamic of metabolites excretion compared with conditions imposed by the submerged culture. Further experiment will consider hydrodynamics aspects and amount of carbon source on effectiveness of the bioprocess. [less ▲]

Detailed reference viewed: 80 (28 ULg)
Full Text
Peer Reviewed
See detailImplementation of structured metal packing for the design of biofilm reactor : analysis by high energy X-ray tomography and application to the production of lipopeptides by Bacillus subtilis
Zune, Quentin ULg; Soyeurt, Delphine; Ongena, Marc ULg et al

Poster (2012, October 08)

1. Whereas multi-species biofilm reactors are commonly used for treatments of water and gas effluents, new strategies are arising for the development of mono-species biofilm reactors in order to produce ... [more ▼]

1. Whereas multi-species biofilm reactors are commonly used for treatments of water and gas effluents, new strategies are arising for the development of mono-species biofilm reactors in order to produce high added value molecules. Thus, it is required to design new bioreactors able to promote the growth of the biomass on the form of a biofilm and to identify the key physico-chemical parameters involved in order to optimize the bioprocess. 2. Aim of this study was to investigate a pilot-scale biofilm reactor comprising a metal structured packing promoting growth of Bacillus subtilis as a biofilm for the production of lipopeptides, high added value compounds with high surface active properties. 3. In this work, the mechanical stirring system of a 20L stirred tank bioreactor has been removed and replaced by a metal structured packing positioned in the headspace of the vessel above a liquid phase. The culture medium is continuously recirculated on the packing thanks to a peristaltic pump and air supply is performed just above the liquid phase under the packing. High energy X-ray tomography was used to estimate non-invasively the biofilm distribution inside the packing and permitted to define parameters that affect scale-up. Performances of the biofilm reactor were compared with a submerged culture in a stirred tank reactor in terms of lipopeptides production. 4. After 72 hours of fermentation, 94 % of the total biomass adheres onto the metal packing on the form of a biofilm. The colonization of this latter has been visualized non-invasively by X-ray tomography directly inside the packing and shows a conical repartition of the biofilm mass (about 25% of the total volume of the packing) as well as the presence of clogging. However, unlike the submerged culture, no foam formation appeared during fermentation and surfactin yield reaches 345,4 ± 32,8 mg / L for the biofilm reactor against 277,3 ± 34,4 mg / L in the stirred tank reactor. 5. In conclusion, this experimental setting leads to a major technological progress avoiding foam formation and increasing surfactin production. Nevertheless, significant improvements are required at the level of the biofilm distribution in thin layers inside the packing in order to increase mass transfer and lipopeptides recoveries. Further investigations will be devoted to the optimization of the physico-chemical parameters involved in biofilm distribution. [less ▲]

Detailed reference viewed: 16 (9 ULg)
Full Text
Peer Reviewed
See detailDesign of a biofilm reactor comprising a metal structured packing for the production of lipopeptides by B. subtilis
Zune, Quentin ULg; Ongena, Marc ULg; Toye, Dominique ULg et al

Poster (2012, February 08)

Abstract : The design of a new single species biofilm bioreactor has been investigated. Bacillus subtilis S499 has been chosen as a model organism for the production of lipopetides. Nevertheless ... [more ▼]

Abstract : The design of a new single species biofilm bioreactor has been investigated. Bacillus subtilis S499 has been chosen as a model organism for the production of lipopetides. Nevertheless, considering the surface active properties for this kind of metabolite, processes based on submerged culture in stirred-tank bioreactor involve the use of important amount of antifoam and therefore downstream processes are tedious. In this work, an original process was developed with an experimental setting leading to the suppression of foam formation during the culture. B. subtilis S499 makes a biofilm on a stainless steel structured packing in the top of a bioreactor, nutrient and oxygen supply being carried out by the media recirculation as liquid film on the packing. Lipopeptides secreted by biofilm are accumulated in the liquid phase under the packing and can reach concentrations as high as 800 mg/l. The colonization of the packing by the biofilm has been monitored by X-ray tomography. [less ▲]

Detailed reference viewed: 87 (22 ULg)
Full Text
See detailModulation de l'effet scale-down chez Saccharomyces cerevisiae par ajout d'acide oléique
Zune, Quentin ULg

Master's dissertation (2011)

Scale-down technology allows to simulate heterogeneities created in an industrial reactor at a laboratory scale. In this kind of bioreactor, fed-batch production of Saccharomyces cerevisiae on glucose ... [more ▼]

Scale-down technology allows to simulate heterogeneities created in an industrial reactor at a laboratory scale. In this kind of bioreactor, fed-batch production of Saccharomyces cerevisiae on glucose induces the apparition of the scale-down effect. It means a decrease in biomass synthesis and an increase in ethanol production as time of culture in comparison with an ideal bioreactor where the mixing operation is perfect. In a recent study, FERIA-GERVASIO et al., (2008) notice that ethanol production is delayed on behalf biomass synthesis when a glucose pulse occurs in a chemostat glucose/oleic acid. The goal of this work is to study the modulation of the scale-down effect by the presence of oleic acid in a fed-batch production of Saccharomyces cerevisiae (boulardii). The methodology is separated in three parts: - development of a yeast conditioning protocol with oleic acid - yeast production with a mixed substrate composed of glucose and oleic acid in a scale-down reactor - computer simulation of glucose gradients experienced by yeast during their displacement in the bioreactor In addition to the measurements performed to describe growth kinetic of yeast on this mixed substrate, an original phenotypic analysis of yeast has been achieved throughout each culture thanks to flow cytometry. At the end of this work, vacuoles staining with fluoro-isothiocyanate has revealed the induction of peroxisomes infered during the yeast conditioning by flow cytometry. Then, it was demonstrated that in a culture in a scale-down reactor preceded by the conditioning, oleic acid naturally reduces ethanol production for the benefit of the biomass synthesis in comparison with a yeast cultivated on glucose only in scale-down reactors. Flow cytometry has not identified a negative influence of oleic acid on cell viability. Finally, simulation of glucose gradients experienced by yeast in the scale-down reactor with oleic acid has demonstrated that yeast feel important extracellular fluctuations in the recycle loop. [less ▲]

Detailed reference viewed: 74 (20 ULg)