References of "Vandenbosch, Renaud"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailForkhead pathway in the control of adult neurogenesis.
Genin, Emmanuelle C.; Caron, Nicolas ULg; Vandenbosch, Renaud ULg et al

in Stem cells (Dayton, Ohio) (2014)

Detailed reference viewed: 2 (0 ULg)
Full Text
Peer Reviewed
See detailNeuronal Differentiation in the Adult Brain: Cdk6 as the Molecular Regulator
Caron, Nicolas ULg; Genin, Emmanuelle ULg; Vandenbosch, Renaud ULg et al

in Hayat, Eric (Ed.) TUMORS OF THE CENTRAL NERVOUS SYSTEM (2013)

Detailed reference viewed: 111 (49 ULg)
Full Text
Peer Reviewed
See detailOpposing regulation of Sox2 by cell-cycle effectors E2f3a and E2f3b in neural stem cells
Julian, Lisa; Vandenbosch, Renaud ULg; Pakenham, Catherine et al

in Cell Stem Cell (2013)

Detailed reference viewed: 36 (14 ULg)
Full Text
Peer Reviewed
See detailLXCXE-independent chromatin remodeling by Rb/E2f mediates neuronal quiescence
Andrusiak, Matthew; Vandenbosch, Renaud ULg; Dick, Frederick et al

in Cell Cycle (Georgetown, Tex.) (2013)

Detailed reference viewed: 20 (3 ULg)
Full Text
Peer Reviewed
See detailCycling or not cycling: cell cycle regulatory molecules and adult neurogenesis.
Beukelaers, Pierre ULg; Vandenbosch, Renaud ULg; Caron, Nicolas ULg et al

in Cellular and Molecular Life Sciences : CMLS (2012), 69(9), 1493-1503

The adult brain most probably reaches its highest degree of plasticity with the lifelong generation and integration of new neurons in the hippocampus and olfactory system. Neural precursor cells (NPCs ... [more ▼]

The adult brain most probably reaches its highest degree of plasticity with the lifelong generation and integration of new neurons in the hippocampus and olfactory system. Neural precursor cells (NPCs) residing both in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles continuously generate neurons that populate the dentate gyrus and the olfactory bulb, respectively. The regulation of NPC proliferation in the adult brain has been widely investigated in the past few years. Yet, the intrinsic cell cycle machinery underlying NPC proliferation remains largely unexplored. In this review, we discuss the cell cycle components that are involved in the regulation of NPC proliferation in both neurogenic areas of the adult brain. [less ▲]

Detailed reference viewed: 51 (21 ULg)
Full Text
Peer Reviewed
See detailThe retinoblastoma protein is essential for survival of postmitotic neurons
Andrusiak, Matthew; Vandenbosch, Renaud ULg; Park, David et al

in Journal of Neuroscience (2012)

Detailed reference viewed: 21 (4 ULg)
Full Text
Peer Reviewed
See detailCdk6-dependent regulation of g(1) length controls adult neurogenesis.
Beukelaers, Pierre; Vandenbosch, Renaud ULg; Caron, Nicolas ULg et al

in Stem Cells (2011), 29(4), 713-24

The presence of neurogenic precursors in the adult mammalian brain is now widely accepted, but the mechanisms coupling their proliferation with the onset of neuronal differentiation remain unknown. Here ... [more ▼]

The presence of neurogenic precursors in the adult mammalian brain is now widely accepted, but the mechanisms coupling their proliferation with the onset of neuronal differentiation remain unknown. Here, we unravel the major contribution of the G(1) regulator cyclin-dependent kinase 6 (Cdk6) to adult neurogenesis. We found that Cdk6 was essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Specifically, Cdk6 deficiency prevents the expansion of neuronally committed precursors by lengthening G(1) phase duration, reducing concomitantly the production of newborn neurons. Altogether, our data support G(1) length as an essential regulator of the switch between proliferation and neuronal differentiation in the adult brain and Cdk6 as one intrinsic key molecular regulator of this process. STEM Cells 2011;29:713-724. [less ▲]

Detailed reference viewed: 58 (31 ULg)
Full Text
Peer Reviewed
See detailCdk2 loss accelerates precursor differentiation and remyelination in the adult central nervous system.
Caillava, Céline; Vandenbosch, Renaud ULg; Jablonska, Beata et al

in Journal of Cell Biology (2011), 193(2), 397-407

The specific functions of intrinsic regulators of oligodendrocyte progenitor cell (OPC) division are poorly understood. Type 2 cyclin-dependent kinase (Cdk2) controls cell cycle progression of OPCs, but ... [more ▼]

The specific functions of intrinsic regulators of oligodendrocyte progenitor cell (OPC) division are poorly understood. Type 2 cyclin-dependent kinase (Cdk2) controls cell cycle progression of OPCs, but whether it acts during myelination and repair of demyelinating lesions remains unexplored. Here, we took advantage of a viable Cdk2(-/-) mutant mouse to investigate the function of this cell cycle regulator in OPC proliferation and differentiation in normal and pathological conditions. During central nervous system (CNS) development, Cdk2 loss does not affect OPC cell cycle, oligodendrocyte cell numbers, or myelination. However, in response to CNS demyelination, it clearly alters adult OPC renewal, cell cycle exit, and differentiation. Importantly, Cdk2 loss accelerates CNS remyelination of demyelinated axons. Thus, Cdk2 is dispensable for myelination but is important for adult OPC renewal, and could be one of the underlying mechanisms that drive adult progenitors to differentiate and thus regenerate myelin. [less ▲]

Detailed reference viewed: 25 (13 ULg)
Full Text
Peer Reviewed
See detailOtotoxic drugs: difference in sensitivity between mice and guinea pigs.
Poirrier, Anne-Lise ULg; Van den Ackerveken, P.; Kim, T. S. et al

in Toxicology Letters (2010), 193(1), 41-9

The development of experimental animal models has played an invaluable role in understanding the mechanisms of neurosensory deafness and in devising effective treatments. The purpose of this study was to ... [more ▼]

The development of experimental animal models has played an invaluable role in understanding the mechanisms of neurosensory deafness and in devising effective treatments. The purpose of this study was to develop an adult mouse model of ototoxic drug-induced hearing loss and to compare the ototoxicity in the adult mouse to that in the well-described guinea pig model. Mice are a powerful model organism, especially due to the large availability of antibodies, probes and genetic mutants. In this study, mice (n=114) and guinea pigs (n=35) underwent systemic treatment with either kanamycin or cisplatin. Auditory brainstem responses showed a significant threshold shift in guinea pigs 2 weeks after the beginning of the ototoxic treatment, while there was no significant hearing impairment recorded in mice. Hair cells and neuronal loss were correlated with hearing function in both guinea pigs and mice. These results indicate that the mouse is not a good model for ototoxicity, which should be taken into consideration in all further investigations concerning ototoxicity-induced hearing loss. [less ▲]

Detailed reference viewed: 63 (14 ULg)
Full Text
Peer Reviewed
See detailExpression patterns of miR-96, miR-182 and miR-183 in the development inner ear
Sacheli, Rosalie ULg; Nguyen, Laurent ULg; Borgs, Laurence ULg et al

in Gene Expression Patterns (2009)

MicroRNAs (miRNAs) constitute a class of small non-coding endogenous RNAs that downregulate gene expression by binding to 3' untranslated region (UTR) of target messenger RNAs. Although they have been ... [more ▼]

MicroRNAs (miRNAs) constitute a class of small non-coding endogenous RNAs that downregulate gene expression by binding to 3' untranslated region (UTR) of target messenger RNAs. Although they have been found to regulate developmental and physiological processes in several organs and tissues, their role in the regulation of the inner ear transcriptome remains unknown. In this report, we have performed systematic in situ hybridization to analyze the temporal and spatial distribution of three miRNAs (miR-96, mR-182, and mR-183) that are likely to arise from a single precursor RNA during the development and the maturation of the cochlea. Strikingly we found that the expression of mR-96, mR-182 and mR-183 was highly dynamic during the development of the cochlea, from the patterning to the differentiation of the main cochlear structures. [less ▲]

Detailed reference viewed: 83 (21 ULg)
Full Text
Peer Reviewed
See detailAdult neurogenesis and the diseased brain.
Vandenbosch, Renaud ULg; Borgs, Laurence ULg; Beukelaers, Pierre ULg et al

in Current Medicinal Chemistry (2009), 16(6), 652-66

For a long time it was believed that the adult mammalian brain was completely unable to regenerate after insults. However, recent advances in the field of stem cell biology, including the identification ... [more ▼]

For a long time it was believed that the adult mammalian brain was completely unable to regenerate after insults. However, recent advances in the field of stem cell biology, including the identification of adult neural stem cells (NSCs) and evidence regarding a continuous production of neurons throughout life in the dentate gyrus (DG) and the subventricular zone of the lateral ventricles (SVZ), have provided new hopes for the development of novel therapeutic strategies to induce regeneration in the damaged brain. Moreover, proofs have accumulated this last decade that endogenous stem/progenitor cells of the adult brain have an intrinsic capacity to respond to brain disorders. Here, we first briefly summarize our current knowledge related to adult neurogenesis before focusing on the behaviour of adult neural stem/progenitors cells following stroke and seizure, and describe some of the molecular cues involved in the response of these cells to injury. In the second part, we outline the consequences of three main neurodegenerative disorders on adult neurogenesis and we discuss the potential therapeutic implication of adult neural stem/progenitors cells during the course of these diseases. [less ▲]

Detailed reference viewed: 55 (15 ULg)
Full Text
Peer Reviewed
See detailCell "circadian" cycle: new role for mammalian core clock genes.
Borgs, Laurence ULg; Beukelaers, Pierre ULg; Vandenbosch, Renaud ULg et al

in Cell Cycle (Georgetown, Tex.) (2009), 8(6), 832-7

In mammals, 24 hours rhythms are organized as a biochemical network of molecular clocks that are operative in all tissues, with the master clock residing in the hypothalamic suprachiasmatic nucleus (SCN ... [more ▼]

In mammals, 24 hours rhythms are organized as a biochemical network of molecular clocks that are operative in all tissues, with the master clock residing in the hypothalamic suprachiasmatic nucleus (SCN). The core pacemakers of these clocks consist of auto-regulatory transcriptional/post-transcriptional feedback loops. Several lines of evidence suggest the existence of a crosstalk between molecules that are responsible for the generation of circadian rhythms and molecules that control the cell cycle progression. In addition, highly specialized cell cycle checkpoints involved in DNA repair after damage seem also, at least in part, mediated by clock proteins. Recent studies have also highlighted a putative connection between clock protein dysfunction and cancer progression. This review discusses the intimate relation that exists between cell cycle progression and components of the circadian machinery. [less ▲]

Detailed reference viewed: 57 (13 ULg)
Full Text
Peer Reviewed
See detailPeriod 2 regulates neural stem/progenitor cell proliferation in the adult hippocampus.
Borgs, Laurence ULg; Beukelaers, Pierre ULg; Vandenbosch, Renaud ULg et al

in BMC Neuroscience (2009), 10

BACKGROUND: Newborn granule neurons are generated from proliferating neural stem/progenitor cells and integrated into mature synaptic networks in the adult dentate gyrus of the hippocampus. Since light ... [more ▼]

BACKGROUND: Newborn granule neurons are generated from proliferating neural stem/progenitor cells and integrated into mature synaptic networks in the adult dentate gyrus of the hippocampus. Since light/dark variations of the mitotic index and DNA synthesis occur in many tissues, we wanted to unravel the role of the clock-controlled Period2 gene (mPer2) in timing cell cycle kinetics and neurogenesis in the adult DG. RESULTS: In contrast to the suprachiasmatic nucleus, we observed a non-rhythmic constitutive expression of mPER2 in the dentate gyrus. We provide evidence that mPER2 is expressed in proliferating neural stem/progenitor cells (NPCs) and persists in early post-mitotic and mature newborn neurons from the adult DG. In vitro and in vivo analysis of a mouse line mutant in the mPer2 gene (Per2Brdm1), revealed a higher density of dividing NPCs together with an increased number of immature newborn neurons populating the DG. However, we showed that the lack of mPer2 does not change the total amount of mature adult-generated hippocampal neurons, because of a compensatory increase in neuronal cell death. CONCLUSION: Taken together, these data demonstrated a functional link between the constitutive expression of mPER2 and the intrinsic control of neural stem/progenitor cells proliferation, cell death and neurogenesis in the dentate gyrus of adult mice. [less ▲]

Detailed reference viewed: 43 (11 ULg)
Full Text
Peer Reviewed
See detailCdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone
Jablonska, Beata; Aguirre, Adan A.; Vandenbosch, Renaud ULg et al

in Journal of Cell Biology (2007), 179(6), 1231-1245

We investigated the function of cyclin-dependent kinase 2 (Cdk2) in neural progenitor cells during postnatal development. Chondroitin sulfate proteoglycan (NG2)-expressing progenitor cells of the ... [more ▼]

We investigated the function of cyclin-dependent kinase 2 (Cdk2) in neural progenitor cells during postnatal development. Chondroitin sulfate proteoglycan (NG2)-expressing progenitor cells of the subventricular zone (SVZ) show no significant difference in density and proliferation between Cdk2(-/-) and wild-type mice at perinatal ages and are reduced only in adult Cdk2(-/-) mice. Adult Cdk2(-/-) SVZ cells in culture display decreased self-renewal capacity and enhanced differentiation. Compensatory mechanisms in perinatal Cdk2(-/-) SVZ cells, which persist until postnatal day 15, involve increased Cdk4 expression that results in retinoblastoma protein inactivation. A subsequent decline in Cdk4 activity to wild-type levels in postnatal day 28 Cdk2(-/-) cells coincides with lower NG2(+) proliferation and self-renewal capacity similar to adult levels. Cdk4 silencing in perinatal Cdk2(-/-) SVZ cells abolishes Cdk4 up-regulation and reduces cell proliferation and self-renewal to adult levels. Conversely, Cdk4 overexpression in adult SVZ cells restores proliferative capacity to wildtype levels. Thus, although Cdk2 is functionally redundant in perinatal SVZ, it is important for adult progenitor cell proliferation and self-renewal through age-dependent regulation of Cdk4. [less ▲]

Detailed reference viewed: 31 (7 ULg)
Full Text
Peer Reviewed
See detailCdk2 Is Dispensable for Adult Hippocampal Neurogenesis
Vandenbosch, Renaud ULg; Borgs, Laurence ULg; Beukelaers, Pierre ULg et al

in Cell Cycle (Georgetown, Tex.) (2007), 6(24), 3065-9

Granule neurons of the dentate gyrus (DG) of the hippocampus undergo continuous renewal throughout life. Among cell cycle regulators, cyclin-dependent kinase 2 (Cdk2) is considered as a major regulator of ... [more ▼]

Granule neurons of the dentate gyrus (DG) of the hippocampus undergo continuous renewal throughout life. Among cell cycle regulators, cyclin-dependent kinase 2 (Cdk2) is considered as a major regulator of S-phase entry. We used Cdk2-deficient mice to decipher the requirement of Cdk2 for the generation of new neurons in the adult hippocampus. The quantification of cell cycle markers first revealed that the lack of Cdk2 activity does not influence spontaneous or seizure-induced proliferation of neural progenitor cells (NPC) in the adult DG. Using bromodeoxyuridine incorporation assays, we showed that the number of mature newborn granule neurons generated de novo was similar in both wild-type (WT) and Cdk2-deficient adult mice. Moreover, the apparent lack of cell output reduction in Cdk2(-/-) mice DG did not result from a reduction in apoptosis of newborn granule cells as analyzed by TUNEL assays. Our results therefore suggest that Cdk2 is dispensable for NPC proliferation, differentiation and survival of adult-born DG granule neurons in vivo. These data emphasize that functional redundancies between Cdks also occur in the adult brain at the level of neural progenitor cell cycle regulation during hippocampal neurogenesis. [less ▲]

Detailed reference viewed: 105 (18 ULg)
Full Text
Peer Reviewed
See detailNew insights into peripherin expression in cochlear neurons
Lallemend, François; Vandenbosch, Renaud ULg; Hadjab, S. et al

in Neuroscience (2007), 150(1), 212-222

Peripherin is an intermediate filament protein that is expressed in peripheral and enteric neurons. In the cochlear nervous system, peripherin expression has been extensively used as a differentiation ... [more ▼]

Peripherin is an intermediate filament protein that is expressed in peripheral and enteric neurons. In the cochlear nervous system, peripherin expression has been extensively used as a differentiation marker by preferentially labeling the type II neuronal population at adulthood, but yet without knowing its function. Since the expression of peripherin has been associated in time with the process of axonal extension and during regeneration of nerve fibers in other systems, it was of interest to determine whether peripherin expression in cochlear neurons was a static phenotypic trait or rather prone to modifications following nerve injury. In the present study, we first compared the expression pattern of peripherin and beta III-tubulin from late embryonic stages to the adult in rat cochlea. The staining for both proteins was seen before birth within all cochlear neurons. By birth, and for 2 or 3 days, peripherin expression was gradually restricted to the type II neuronal population and their projections. In contrast, from postnatal day (P) 10 onwards, while the expression of beta III-tubulin was still found in projections of all cochlear neurons, only the type I population had beta III-tubulin immunoreactivity in their cell bodies. We next investigated the expression of peripherin in axotomized cochlear neurons using an organotypic explant model. Peripherin expression was surprisingly re-expressed in a vast majority of neurons after axotomy. In parallel, the expression and localization of beta III-tubulin and peripherin in dissociated cultures of cochlear neurons were studied. Both proteins were distributed along the entire neuronal length but exhibited complementary distribution, especially within the projections. Moreover, peripherin immunoreactivity was still abundant in the growth cone, whereas that of beta III-tubulin was decreasing at this compartment. Our findings are consistent with a model in which peripherin plays an important structural role in cochlear neurons and their projections during both development and regenerative processes and which is compatible with the assumption that frequently developmentally regulated factors are reactivated during neuronal regeneration. [less ▲]

Detailed reference viewed: 49 (13 ULg)
See detailRole of Sox 10 in the development of the inner ear
Bodson, M; Breuskin, I; Thelen, Nicolas ULg et al

Poster (2006)

Detailed reference viewed: 6 (2 ULg)
Full Text
Peer Reviewed
See detailThe Yin and Yang of cell cycle progression and differentiation in the oligodendroglial lineage
Nguyen, Laurent ULg; Borgs, Laurence ULg; Vandenbosch, Renaud ULg et al

in Mental Retardation & Developmental Disabilities Research Reviews (2006), 12(2), 85-96

In white matter disorders such as leukodystrophies (LD), periventricular leucomalacia (PVL), or multiple sclerosis (MS), the hypomyelination or the remyelination failure by oligodendrocyte progenitor ... [more ▼]

In white matter disorders such as leukodystrophies (LD), periventricular leucomalacia (PVL), or multiple sclerosis (MS), the hypomyelination or the remyelination failure by oligodendrocyte progenitor cells involves errors in the sequence of events that normally occur during development when progenitors proliferate, migrate through the white matter, contact the axon, and differentiate into myelin-forming oligodendrocytes. Multiple mechanisms underlie the eventual progressive deterioration that typifies the natural history of developmental demyelination in LID and PVL and of adult-onset demyelination in MS. Over the past few years, pathophysiological studies have mostly focused on seeking abnormalities that impede oligodendroglial maturation at the level of migration, myelination, and survival. In contrast, there has been a strikingly lower interest for early proliferative and differentiation events that are likely to be equally critical for white matter development and myelin repair. This review highlights the Yin and Yang principles of interactions between intrinsic factors that coordinately regulate progenitor cell division and the onset of differentiation, i.e. the initial steps of oligodendrocyte lineage progression that are obviously crucial in health and diseases. (C) 2006 Wiley-Liss, Inc. [less ▲]

Detailed reference viewed: 58 (4 ULg)