References of "Thomassin, Jean-Michel"
     in
Bookmark and Share    
See detailFe2O3 nanoparticle-functionalized N-doped carbon with interconnected, hierarchical porous structures as high-performance electrode for lithium ion batteries
Alkarmo, Walid ULg; Ouhib, Farid ULg; Aqil, Abdelhafid ULg et al

Poster (2016, May 23)

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous ... [more ▼]

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous frameworks have emerged as attractive materials for various electrochemical energy storage/conversion devices, including Li-ion batteries (LIBs), Li−O2 batteries, Li−S batteries, supercapacitors, and fuel cells. A hierarchically structured macro- and mesoporous N-doped carbon with dispersed Fe2O3 nanoparticles (NDC@Fe2O3) is prepared by thermal treatment of a novel composite composed by PMMA particles decorated by graphene oxide (GO), PPy and iron salts. The NDC@Fe2O3 composite exhibited high surface area with a hierarchical pores structure. Integrated as a lithium ion battery anode, NDC@Fe2O3 exhibited high reversible capacity of 930 mA h/g over 200 cycles. The combination of Fe2O3 nanoparticles with porous carbon to form hybrid anode has been an efficient way to maintain the electronic integrity of the whole electrode since the carbon acts as a buffer layer to accommodate the volume variation and to provide multidimensional electron transport pathways during the charge/discharge process. [less ▲]

Detailed reference viewed: 128 (3 ULg)
See detailSynthesis of CO2-sourced hydrogels by using the non-isocyanate polyurethane (NIPU) chemistry
Gennen, Sandro ULg; Grignard, Bruno ULg; Thomassin, Jean-Michel ULg et al

Poster (2016, May 23)

Polyurethane (PUs) is one of the most important polymers and finds applications as elastomers, coatings, adhesives and sealants for automotive or construction. PU is also a material of choice in the ... [more ▼]

Polyurethane (PUs) is one of the most important polymers and finds applications as elastomers, coatings, adhesives and sealants for automotive or construction. PU is also a material of choice in the biomedical domain due to its good biocompatibility, biodegradation and mechanical properties. Especially, PUs hydrogels have been developed in the last years for biomedical applications such as soft contact lenses, wound dressing, drug delivery systems and scaffolds for tissue engineering. Traditionally, PUs are synthesized by a step-growth polymerization between diols and diisocyanates. Because of toxicity issues and a possible interdiction of isocyanates, we focused on developing new PU hydrogels using a non-isocyanate route (Figure 1). The polyurethanes formed by this route are called NIPU (for Non-Isocyanate PolyUrethane). Firstly, chemically cross-linked NIPU gels were synthesized by solvent-free polycondensation between a hydrophilic CO2-sourced polyethyleneglycol bi-cyclic carbonate and a diamine in the presence of a crosslinker. Then, NIPU gels were swelled in water till water equilibrium before characterization of their mechanical properties by compression tests. The influence of the cross-linking ratios (diamine/crosslinker ratio) and diamine structure on the swelling and the compression properties were studied. To reinforce the compression properties of NIPU hydrogel (increase in stress at break, strain at break and compression modulus), a nanofiller was dispersed in the cyclic carbonate/diamine/crosslinker formulation prior to polymerization. For the first time, nanocomposite NIPU hydrogels with high water contents (up to 80%) and good compression properties have been prepared by using low clay content. [less ▲]

Detailed reference viewed: 70 (2 ULg)
Full Text
Peer Reviewed
See detailCO2-blown microcellular non-isocyanate polyurethane (NIPU) foams: from bio- and CO2-sourced monomers to potentially thermal insulating materials
Grignard, Bruno ULg; Thomassin, Jean-Michel ULg; Gennen, Sandro ULg et al

in Green Chemistry (2016), 18(7), 2206-2215

Bio- and CO2-sourced non-isocyanate polyurethane (NIPU) microcellular foams were prepared using supercritical carbon dioxide (scCO2) foaming technology. These low-density foams offer low thermal ... [more ▼]

Bio- and CO2-sourced non-isocyanate polyurethane (NIPU) microcellular foams were prepared using supercritical carbon dioxide (scCO2) foaming technology. These low-density foams offer low thermal conductivity and have an impressive potential for use in insulating materials. They constitute attractive alternatives to conventional polyurethane foams. We investigated CO2’s ability to synthesize the cyclic carbonates that are used in the preparation of NIPU by melt step-growth polymerization with a bio-sourced amino-telechelic oligoamide and for NIPU foaming. Our study shows that CO2 is not only sequestered in the material for long-term application, but is also valorized as a blowing agent in the production of NIPU foams. Such foams will contribute to energy conservation and savings by reducing CO2 emissions. [less ▲]

Detailed reference viewed: 109 (23 ULg)
Full Text
Peer Reviewed
See detailHot Melt Extrusion as a New Method to Form Inclusion Complexes with Cyclodextrins
Thiry, Justine ULg; Krier, Fabrice; Ratwatte, Shenelka et al

Conference (2016, April 06)

Detailed reference viewed: 26 (1 ULg)
See detailRecyclable shape-memory materials based on photo- or thermo-reversible reactions
Defize, Thomas ULg; Riva, Raphaël ULg; Thomassin, Jean-Michel ULg et al

Poster (2016, February 16)

Shape-memory polymers (SMPs) are remarkable materials able to switch from a stressed deformed state (temporary shape) to their initial relaxed state (permanent shape) by the application of a stimulus ... [more ▼]

Shape-memory polymers (SMPs) are remarkable materials able to switch from a stressed deformed state (temporary shape) to their initial relaxed state (permanent shape) by the application of a stimulus, such as heat or light. Typically, the shape-memory property is generally observed for chemically or physically cross-linked polymers that exhibit an elastomeric behavior above a phase transition, e.g. glass or melting transition. As an example, cross-linked semi-crystalline poly(ε-caprolactone) (PCL) is widely studied for the development of SMPs. As most of SMPs are irreversibly cross-linked material, their reprocessing is impossible preventing any recycling. Thereby, reversible reactions, allowing the formation/cleavage of the network, raise tremendous interest for the development of new SMPs. Recently, we reported the preparation reversibly cross-linked PCL-based SMP using the Diels-Alder (DA) reaction between furan and maleimide end-groups of 4-arm star-shaped PCL, well-known to create reversible bonds. After implementation, this shape-memory material was demonstrated to be recyclable, and was characterized by excellent fixity and recovery before and after recycling experiments. However, the relatively low retro DA temperature of the furan-maleimide adducts led to an inelastic deformation during shape-memory tensile cycles. In order to get rid of this drawback, an alternative approach was investigated. The substitution of the DA reaction by a photo-reversible reaction, typically the photo-induced (2+2) cycloaddition of coumarins, was proposed to prepare cross-linked PCL matrix presenting one-way and two-way memory properties, since photolabile adducts are supposed to be stable during shape-memory tensile cycles. [less ▲]

Detailed reference viewed: 20 (2 ULg)
Full Text
Peer Reviewed
See detailSolubility and speciation of ketoprofen and aspirin in supercritical CO2 by infrared spectroscopy
Champeau, Mathilde; Thomassin, Jean-Michel ULg; Jérôme, Christine ULg et al

in Journal of Chemical & Engineering Data (2016), 61(2), 968-978

The solubility of ketoprofen and aspirin in subcritical and supercritical CO2 was measured using FTIR absorption spectroscopy in the large range of temperature of 298.2−353.2 K and pressure of 5−35 MPa ... [more ▼]

The solubility of ketoprofen and aspirin in subcritical and supercritical CO2 was measured using FTIR absorption spectroscopy in the large range of temperature of 298.2−353.2 K and pressure of 5−35 MPa. The evolution of the solubility of both active pharmaceutical ingredients (APIs) was fitted using the Chrastil’s equation. In addition, the speciation of both APIs in monomeric and dimeric forms was explored by analyzing the characteristic carbonyl stretching vibrations of the carboxylic acid functions assigned to the dimers and monomers, respectively. Moreover, the evolution of the dimerization constant K of the two drugs as a function of the temperature and the pressure of scCO2 has been reported. [less ▲]

Detailed reference viewed: 44 (6 ULg)
Full Text
Peer Reviewed
See detailComprehensive study of the thermo-reversibility of Diels-Alder based PCL polymer networks
Defize, Thomas ULg; Thomassin, Jean-Michel ULg; Alexandre, Michaël et al

in Polymer (2016), 84

Chemical crosslinking is an efficient tool to improve or impart new properties to conventional polymers. Especially, crosslinking imparts remarkable shapeememory properties to poly-ε-caprolactone (PCL ... [more ▼]

Chemical crosslinking is an efficient tool to improve or impart new properties to conventional polymers. Especially, crosslinking imparts remarkable shapeememory properties to poly-ε-caprolactone (PCL) materials. Nevertheless, the processing of networks is often tricky due to infusibility and insolubility of cross-linked chains. Therefore, the synthesis of PCL networks including thermo-reversible crosslinks based on (retro)-Diels-Alder (DA) reaction were developed to allowpreserving the melt-processing while keeping the required mechanical properties below the melting point. This paper aims at studying in depth, such thermo-dependent network formation and stability. Besides conventional swelling experi- ments, Raman spectroscopy was revealed as a powerful tool to follow the formation of the DA adduct during the crosslinking. In combination with rheological measurements, we were able to determine the most appropriate temperatures to form the network (DA crosslinking) and to process it (retro-DA re- action) without degradation of the material. [less ▲]

Detailed reference viewed: 48 (4 ULg)
Full Text
Peer Reviewed
See detailProcessing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb
Bollen, Pierre; Quievy, Nicolas; Detrembleur, Christophe ULg et al

in Materials & Design (2016), 89

A multifunctional hybrid material class in the form of a sandwich panel has been developed towards the com- bined optimization of mechanical and electromagnetic absorption performance. The faces of the ... [more ▼]

A multifunctional hybrid material class in the form of a sandwich panel has been developed towards the com- bined optimization of mechanical and electromagnetic absorption performance. The faces of the panel are made of glass fibre reinforced epoxy composites and the core is made of carbon nanotube reinforced polymer foam filling a metallic honeycomb. The different processing strategies and options tested to fabricate the core material are described aswell as the associated scientific and technological issues. The most efficient processing route is by foaming the nanocomposite with a chemical foaming agent directly inside the honeycomb. This route offers a good surface finish and the operation can be achieved in one step. But, in order to produce large panels with a semi-continuous process, thermo-mechanical insertion of the foamed nanocomposite with supercritical CO2 can be more suitable. The characterization of the electromagnetic absorption of the panels produced by dif- ferent routes shows that the performance is not much sensitive to processing defects making possible upscaling to mass production. [less ▲]

Detailed reference viewed: 49 (4 ULg)
Full Text
Peer Reviewed
See detailExperimental and computational micro–mechanical investigations of compressive properties of polypropylene/multi–walled carbon nanotubes nanocomposite foams
Wan, Fangyi; Tran, Minh Phuong; Leblanc, Christophe ULg et al

in Mechanics of Materials (2015), 91(Part 1), 95-118

The compressive behavior of nanocomposite foams is studied by both experimental and computational micro-mechanics approaches with the aim of providing an efficient computational model for this kind of ... [more ▼]

The compressive behavior of nanocomposite foams is studied by both experimental and computational micro-mechanics approaches with the aim of providing an efficient computational model for this kind of material. The nanocomposites based on polypropylene (PP) and different contents of multi-walled carbon nanotubes (CNTs) are prepared by melt mixing method. The nanocomposite samples are foamed using super-critical carbon dioxide (ScCO2) as blowing agent at different soaking temperatures. The influence of this foaming parameter on the morphological characteristics of the foam micro-structure is discussed. Differential Scanning Calorimetry (DSC) measurements are used to quantify the crystallinity degree of both nanocomposites and foams showing that the crystallinity degree is reduced after the foaming process. This modification leads to mechanical properties of the foam cell walls that are different from the raw nanocomposite PP/CNTs material. Three--point bending tests are performed on the latter to measure the flexural modulus in terms of the crystallinity degree. Uniaxial compression tests are then performed on the foamed samples under quasi-static conditions in order to extract the macro-scale compressive response. Next, a two-level multi-scale approach is developed to model the behavior of the foamed nanocomposite material. On the one hand, the micro-mechanical properties of nanocomposite PP/CNTs cell walls are evaluated from a theoretical homogenization model accounting for the micro-structure of the semi-crystalline PP, for the degree of crystallinity, and for the CNT volume fraction. The applicability of this theoretical model is demonstrated via the comparison with experimental data from the described experimental measurements and from literature. On the other hand, the macroscopic behavior of the foamed material is evaluated using a computational micro-mechanics model using tetrakaidecahedron unit cells and periodic boundary conditions to estimate the homogenized properties. The unit cell is combined with several geometrical imperfections in order to capture the elastic collapse of the foamed material. The numerical results are compared to the experimental measurements and it is shown that the proposed unit cell computational micro-mechanics model can be used to estimate the homogenized behavior, including the linear and plateau regimes, of nanocomposite foams. [less ▲]

Detailed reference viewed: 232 (67 ULg)
See detailNew efficient organocatalytic system for solvent-free chemical fixation of CO2 into epoxides
Panchireddy, Satyannarayana ULg; Gennen, Sandro ULg; Alves, Margot ULg et al

Poster (2015, September 11)

Due to concerns about global warming combined with the decrease of fossil resources, the chemical transformation of carbon dioxide (CO2) into added-value products has gained interest in both academic and ... [more ▼]

Due to concerns about global warming combined with the decrease of fossil resources, the chemical transformation of carbon dioxide (CO2) into added-value products has gained interest in both academic and industrial fields. To date, the chemical fixation of CO2 onto epoxides with the formation of cyclic carbonates (CC) is one of the most promising ways to valorise CO2 at an industrial scale. Indeed, CC are useful monomers for polycarbonate synthesis and they can react with primary amines to produce 2-hydroxyethylurethane. This reaction can be extrapolated to the synthesis of non-isocyanate polyurethanes (NIPUs) by a step growth polymerization between bifunctional CC and diamines. [less ▲]

Detailed reference viewed: 114 (10 ULg)
See detailIntercalation of imidazolium end-functionalized polyphosphates between montmorillonite nanosheets towards flame-retardant
Carion, Stéphan ULg; Lecomte, Philippe ULg; Thomassin, Jean-Michel ULg et al

Poster (2015, September 11)

Among the additives used to impart flame-retardant properties to polymer materials, phosphorous additives and nanoclays are widely used. The aim of this work is to associate both additives to bring about ... [more ▼]

Among the additives used to impart flame-retardant properties to polymer materials, phosphorous additives and nanoclays are widely used. The aim of this work is to associate both additives to bring about a synergetic effect for improving the flame-retardancy of the material (1). In a first step, the synthesis of an aliphatic polyphosphate end-capped by an imidazolium cation is reported. Secondly, this polymer is intercalated between montmorillonite nanoclays. The strategy used for the synthesis of the polyphosphate is based on the ring-opening polymerization of the corresponding cyclic phosphate by using 1-(11-hydroxy-undecyl)-3-methylimidazolium bromide as an initiator. This polymerization was catalyzed by DBU and a thiourea derivative (2). This polymer was characterized by a set of techniques (31P and 1H NMR, SEC, TGA, DSC). Finally, the cationic end-functionalized polymer was exchanged with sodium cations present in montmorillonite. The intercalation of the polyphosphate between the clay nanosheets was proved by X-Ray Diffraction (XRD) and thermogravimetric analysis (TGA). This last technique was also used to determine the influence of the intercalation on the thermal stability of the polyphosphate. [less ▲]

Detailed reference viewed: 35 (6 ULg)
See detailDevelopment of photo- or thermo-reversible cross-linked recyclable shape-memory materials
Defize, Thomas ULg; Riva, Raphaël ULg; Thomassin, Jean-Michel ULg et al

Conference (2015, September 01)

Shape-memory polymers (SMPs) are remarkable materials able to switch from a stressed deformed state (temporary shape) to their initial relaxed state (permanent shape) by the application of a stimulus ... [more ▼]

Shape-memory polymers (SMPs) are remarkable materials able to switch from a stressed deformed state (temporary shape) to their initial relaxed state (permanent shape) by the application of a stimulus, such as heat or light. Typically, the shape-memory property is generally observed for chemically or physically cross-linked polymers that exhibit an elastomeric behavior above a phase transition, e.g. glass or melting transition. As an example, cross-linked semi-crystalline poly(ε-caprolactone) (PCL) is widely studied for the development of SMPs. As most of SMPs are irreversibly cross-linked material, their reprocessing is impossible preventing any recycling. Thereby, reversible reactions, allowing the formation/cleavage of the network, raise tremendous interest for the development of new SMPs. Recently, we reported the preparation reversibly cross-linked PCL-based SMP using the Diels-Alder (DA) reaction between furan and maleimide end-groups of 4-arm star-shaped PCL, well-known to create reversible bonds. After implementation, this shape-memory material was demonstrated to be recyclable, and was characterized by excellent fixity and recovery before and after recycling experiments. However, the relatively low retro DA temperature of the furan-maleimide adducts led to an inelastic deformation during shape-memory tensile cycles. In order to get rid of this drawback, an alternative approach was investigated. The substitution of the DA reaction by a photo-reversible reaction, typically the photo-induced (2+2) cycloaddition of coumarins, was proposed to prepare cross-linked PCL matrix presenting one-way and two-way memory properties, since photolabile adducts are supposed to be stable during shape-memory tensile cycles. [less ▲]

Detailed reference viewed: 69 (5 ULg)
Full Text
Peer Reviewed
See detailDrug loading of polymer implants by supercritical CO2 assisted impregnation: a review
Champeau, Mathilde; Thomassin, Jean-Michel ULg; Tassaing, Thierry et al

in Journal of Controlled Release (2015), 209

Drug loaded implants also called drug-eluting implants have proven their benefits over simple implants. Among the developed manufacturing processes, the supercritical CO2 (scCO2) assisted impregnation has ... [more ▼]

Drug loaded implants also called drug-eluting implants have proven their benefits over simple implants. Among the developed manufacturing processes, the supercritical CO2 (scCO2) assisted impregnation has attracted growing attention to load Active Pharmaceutical Ingredients into polymer implants since it enables to recover a final implant free of any solvent residue and to operate under mild temperature which is suitable for processing with thermosensitive drugs. This paper is a review of the state-of-the-art and the application of the scCO2 assisted impregnation process to prepare drug-eluting implants. It introduces the process and presents its advantages for biomedical applications. The influences of the characteristics of the implied binary systems and of the experimental conditions on the drug loading are described. Then, the various current applications of this process for manufacturing drug-eluting implants are reviewed. Finally, the new emerging variations of this process are described. [less ▲]

Detailed reference viewed: 40 (10 ULg)
See detailPhoto- and thermo-reversible crosslinked recyclable shape memory materials
Defize, Thomas ULg; Riva, Raphaël ULg; Thomassin, Jean-Michel ULg et al

Poster (2015, July 02)

Shape memory polymers (SMPs) are remarkable materials able to switch from a stressed deformed state (temporary shape) to their initial relaxed state (permanent shape) by the application of a stimulus ... [more ▼]

Shape memory polymers (SMPs) are remarkable materials able to switch from a stressed deformed state (temporary shape) to their initial relaxed state (permanent shape) by the application of a stimulus; such as heat or light. Typically; the shape memory property is generally observed for chemically or physically cross-linked polymers that exhibit an elastomeric behavior above a phase transition; e.g. glass or melting transition. As an example; cross-linked semi-crystalline poly(ε-caprolactone) (PCL) is widely studied for the development of SMPs. As most of SMPs are irreversibly cross-linked material; their reprocessing is impossible preventing any recycling. Thereby; reversible reactions; allowing the formation/cleavage of the network; raise tremendous interest for the development of new SMPs. Recently, we reported the preparation reversibly cross-linked PCL-based SMP using the Diels-Alder (DA) reaction between furan and maleimide end-groups of 4-arm star-shaped PCL, well-known to create reversible bonds. After implementation, this shape memory material was demonstrated to be recyclable, and was characterized by excellent fixity and recovery before and after recycling experiments. However, the relatively low retro DA temperature of the furan-maleimide adducts led to an inelastic deformation during shape memory tensile cycles. In order to get rid of this drawback, an alternative approach was investigated. The substitution of the DA reaction by a photo-reversible reaction, typically the photo-induced (2+2) cycloaddition of coumarins, was proposed to prepare cross-linked PCL matrix presenting one-way and two-way memory properties, since photolabile adducts are supposed to be stable during shape memory tensile cycles. [less ▲]

Detailed reference viewed: 84 (8 ULg)