References of "Tarayre, Cédric"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNew perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste
Tarayre, Cédric ULg; De Clercq, Lies; Charlier, Raphaëlle et al

in Bioresource Technology (2016), 206

Phosphate rock has long been used for the production of phosphorus based chemicals. However, considering the depletion of the reservoirs and the decrease of the quality of phosphate rocks, a potential ... [more ▼]

Phosphate rock has long been used for the production of phosphorus based chemicals. However, considering the depletion of the reservoirs and the decrease of the quality of phosphate rocks, a potential market is now emerging for the recovery of phosphate from waste and its reuse for different applications. Notably, phosphate recovery from wastewater could be included in a circular economy approach. This review focuses on the use of microbial systems for phosphorus accumulation and recovery, by considering the actual range of analytical techniques available for the monitoring of phosphorus accumulating organisms, as well as the actual biochemical and metabolic engineering toolbox available for the optimization of bioprocesses. In this context, knowledge gathered from process, system and synthetic biology could potentially lead to innovative process design. [less ▲]

Detailed reference viewed: 27 (2 ULg)
Full Text
See detailTechniques for nutrient recovery from manure and slurry
Camargo-Valero, Miller; De Clercq, Lies; Delvigne, Frank ULg et al

Report (2015)

Detailed reference viewed: 31 (1 ULg)
Full Text
See detailTechniques for nutrient recovery from digestate derivatives
Bamelis, Lies; Blancke, Stieven; Camargo-Valero, Miller et al

Report (2015)

Detailed reference viewed: 17 (0 ULg)
Full Text
See detailTechniques for nutrient recovery from household and industrial wastes
Camargo-Valero, Miller; Bamelis, Lies; De Clercq, Lies et al

Report (2015)

Detailed reference viewed: 15 (3 ULg)
Full Text
Peer Reviewed
See detailFluorescent reporter libraries as useful tools for optimizing microbial cell factories: a review of the current methods and applications
Delvigne, Frank ULg; Pêcheux, Hélène; Tarayre, Cédric ULg

in Frontiers in Bioengineering and Biotechnology (2015), 3

The use of genetically encoded fluorescent reporters allows speeding up the initial optimization steps of microbial bioprocesses. These reporters can be used for determining the expression level of a ... [more ▼]

The use of genetically encoded fluorescent reporters allows speeding up the initial optimization steps of microbial bioprocesses. These reporters can be used for determining the expression level of a particular promoter, not only the synthesis of a specific protein but also the content of intracellular metabolites. The level of protein/metabolite is thus proportional to a fluorescence signal. By this way, mean expression profiles of protein/ metabolites can be determined non-invasively at a high-throughput rate, allowing the rapid identification of the best producers. Actually, different kinds of reporter systems are available, as well as specific cultivation devices allowing the on-line recording of the fluorescent signal. Cell-to-cell variability is another important phenomenon that can be integrated into the screening procedures for the selection of more efficient microbial cell factories. [less ▲]

Detailed reference viewed: 23 (1 ULg)
Full Text
Peer Reviewed
See detailBIOREFINE Project – Recovery of useful nutrients from organic wastes produced in five European countries (3AV.3.55)
Tarayre, Cédric ULg; De Clercq, Lies; Michels, Evi et al

Poster (2015, June 01)

At this time, many wastes are used or eliminated through processes that do not really consider their potential applications. Such wastes contain useful nutrients (nitrogen, phosphorus and potassium), the ... [more ▼]

At this time, many wastes are used or eliminated through processes that do not really consider their potential applications. Such wastes contain useful nutrients (nitrogen, phosphorus and potassium), the importance of which has been demonstrated in agriculture for many years. The composition of wastes is highly heterogeneous, which makes treatment techniques more difficult to apply on a large scale. Sewage sludge is usually used as a fertilizer in agriculture, in energy production or in the field of construction. The main use of manure is agriculture, although considerable amounts of nutrients are lost and cause pollution. Digestate is also used in agriculture, but other alternatives have been proposed. Ashes should also be highlighted, although they do not contain nitrogen, which is lost into the atmosphere during the combustion process. Finally, household and industrial wastes are resources that should be considered as well. Those different types of wastes could be recycled to produce environment-friendly fertilizers. Here, we propose to investigate these opportunities inside five European countries (Belgium, France, Germany, United Kingdom and The Netherlands) through five work packages with the BioRefine Project. [less ▲]

Detailed reference viewed: 40 (7 ULg)
Full Text
Peer Reviewed
See detailMultiple analyses of microbial communities applied to the gut of the wood-feeding termite Reticulitermes flavipes fed on artificial diets
Tarayre, Cédric ULg; Bauwens, Julien ULg; Mattéotti, Christel et al

in Symbiosis (2015)

The purpose of this work was the observation of the differences between the microbial communities living in the gut of the termite Reticulitermes flavipes fed on different diets. The termites were fed on ... [more ▼]

The purpose of this work was the observation of the differences between the microbial communities living in the gut of the termite Reticulitermes flavipes fed on different diets. The termites were fed on poplar wood (original diet) and artificial diets consisting of crystalline cellulose (with and without lignin), α-cellulose (with and without lignin) and xylan. The termites were then dissected and the protist communities were analyzed through microscopy, leading to the conclusion that protist species are strongly influenced by diets. BIOLOG ECO Microplates® were used to assess the metabolic properties of the different types of consortia, highlighting strong differences on the basis of principal component analysis and calculation of similarity rates. The microorganisms were cultivated in liquid media corresponding to the artificial diets before being characterized through a metagenetic analysis of gut microbiota (16S ribosomal DNA). This analysis identified several phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Nitrospirae, OP9, Planctomycetes, Proteobacteria, Spirochaetes, TM6, Tenericutes, Verrucomicrobia and WS3. The OTUs were also determined and confirmed the abundance of Proteobacteria, Bacteroidetes, Firmicutes and Verrucomicrobia. It was possible to isolate several strains from the liquid media, and one bacterium and several fungi were found to produce interesting enzymatic activities. The bacterium Chryseobacterium sp. XAvLW produced α-amylase, β-glucosidase, endo-1,4-β-D-glucanase, endo-1,4-β-D-xylanase and filter paper-cellulase, while the fungi Sarocladium kiliense CTGxxyl and Trichoderma virens CTGxAviL generated the same activities added with endo-1,3-β-D-glucanase. [less ▲]

Detailed reference viewed: 60 (21 ULg)
Full Text
Peer Reviewed
See detailDetermination of Zinc, Cadmium and Lead Bioavailability in Contaminated Soils at the Single-Cell Level by a Combination of Whole-Cell Biosensors and Flow Cytometry
Hurdebise, Quentin ULg; Tarayre, Cédric ULg; Fischer, Christophe ULg et al

in Sensors (2015)

Zinc, lead and cadmium are metallic trace elements (MTEs) that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this ... [more ▼]

Zinc, lead and cadmium are metallic trace elements (MTEs) that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pPZntAgfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP) accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pPZntAgfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pPZntAgfp could be used as a monitoring tool for contaminated soils being processed. [less ▲]

Detailed reference viewed: 61 (22 ULg)
Peer Reviewed
See detailWood digestion in lower termites: multidisciplinary approaches based on differential feeding
Bauwens, Julien ULg; Brasseur, Catherine ULg; Tarayre, Cédric ULg et al

Poster (2014, December)

Termites digestive tract and hindgut especially still holds many secrets despites hundreds of years of research. The complexity of the symbiotic microbial community and the contrast of physio-chemical ... [more ▼]

Termites digestive tract and hindgut especially still holds many secrets despites hundreds of years of research. The complexity of the symbiotic microbial community and the contrast of physio-chemical environments found in lower termites paunch are potentially the key point to explain the efficiency of ligno-cellulose digestion. Contribution of advancing technologies accelerates the progress of our knowledge in this field. Here, we present multiple approaches combining old and recent techniques used to highlight the effect of ligno-cellulosic compounds on termite gut and the role of populations from the symbiotic microbial community. Termites Reticulitermes flavipes (Kollar) submitted to various artificial diets showed variations in flagellates populations profile and enzymatic activities. Differential protein expression was investigated using 2D-DIGE MALDI-TOF-TOF and 2D-LC-MS/MS using high resolution orbitrap analyzer. Results from both proteomic experiments tend to support each-other and bring complementary points of view. The gel-free analysis resulted in highly contrasted identification of enzymes involved in ligno-cellulose digestion and metabolism. Finally, differential feeding experiments leaded to in vivo selection of different symbiotic communities. These communities were characterized following some metabolism assays and allowed the cultivation of diverse microbial consortia using media closely related to the respective artificial diets. This work provides relevant data on termite and associated microbial community response to alimentary diets. [less ▲]

Detailed reference viewed: 76 (11 ULg)
Full Text
See detailÉTUDE DU COMPLEXE ENZYMATIQUE DES SYMBIONTES DU TERMITE RETICULITERMES FLAVIPES (EX. SANTONENSIS)
Tarayre, Cédric ULg

Doctoral thesis (2014)

In the light of the economic, environmental and social context in which we live today, it has become obvious that the use of fossil fuels is not conceivable over the long term. Some alternatives have ... [more ▼]

In the light of the economic, environmental and social context in which we live today, it has become obvious that the use of fossil fuels is not conceivable over the long term. Some alternatives have therefore emerged in recent years. Second-generation biofuels are one of those alternatives and are based on the exploitation of vegetal biomass, also called lignocellulosic biomass. These materials require a hydrolysis step which can notably be achieved by enzymes. Some insects, such as termites, harbor complex microbial communities inside their digestive tracts. Those communities are able to produce enzymes which can be used in the field of the hydrolysis of vegetal biomass. This is what this thesis deals with. The main part of the work done focused on the research of enzyme-producing microorganisms (bacteria, mycetes and protists) responsible for the degradation of hemicelluloses and cellulose, the hydrolysis of which releases fermentable sugars. The insect which was used in this work was Reticulitermes flavipes (ex. santonensis), a lower termite, harboring a highly diversified internal microflora. This thesis describes the characterization of the microbial strains which were isolated and the enzymes they secrete. A complementary part of this research focussed on termites grown on artificial diets. The objective of this part was multiple : isolating enzyme-producing strains, not extractable according to the standard technique, and characterizing the microflora resulting from the applied artificial diets. This multidisciplinary approach was based on microscopy, proteomics, metagenomics and the assessment of metabolism applied to the different microbial consortia. [less ▲]

Detailed reference viewed: 112 (25 ULg)
Full Text
Peer Reviewed
See detailIsolation and cultivation of xylanolytic and cellulolytic Sarocladium kiliense and Trichoderma virens from the gut of the termite Reticulitermes santonensis
Tarayre, Cédric ULg; Bauwens, Julien ULg; Brasseur, Catherine ULg et al

in Environmental Science and Pollution Research (2014)

The purpose of this work was the isolation and cultivation of cellulolytic and xylanolytic microorganisms extracted from the gut of the lower termite Reticulitermes santonensis. Microcrystalline cellulose ... [more ▼]

The purpose of this work was the isolation and cultivation of cellulolytic and xylanolytic microorganisms extracted from the gut of the lower termite Reticulitermes santonensis. Microcrystalline cellulose (with and without lignin) and beech wood xylan were used as diets instead of poplar wood in order to select cellulose and hemicellulose-degrading fungi. The strain Sarocladium kiliense (Acremonium kiliense) CTGxxyl was isolated from the termites fed on xylan, while the strain Trichoderma virens CTGxAviL was isolated from the termites fed on cellulose (with and without lignin). Both molds were cultivated in liquid media containing different substrates: agro-residues or purified polymers. S. kiliense produced maximal β-glucosidase, endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase and endo-1,4-β-D-xylanase activities of 0.103, 3.99, 0.53, and 40.8 IU/ml, respectively. T. virens produced maximal β-xylosidase, endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase, and endo-1,4-β-D-xylanase activities of 0.38, 1.48, 0.69, and 426 IU/ml. The cellulase and the xylanase of S. kiliense, less common than T. virens, were further investigated. The optimal activity of the xylanase was observed at pH 9–10 at 60 °C. The cellulase showed its maximal activity at pH 10, 70 °C. Zymography identified different xylanases produced by both molds, and some fragment sizes were highlighted: 35, 100, and 170 kDa for S. kiliense and 20, 40, 80, and 170 kDa for T. virens. In both cases, endo-1,4-β-D-xylanase activitieswere confirmed through mass spectrometry. [less ▲]

Detailed reference viewed: 70 (22 ULg)
Full Text
Peer Reviewed
See detailBioRefine Project: Detection of bioavailability of Metallic Trace Elements in soils by the use of microbial biosensors
Tarayre, Cédric ULg; Hurdebise, Quentin ULg; Fischer, Christophe ULg et al

Poster (2014, September 09)

Zinc, lead and cadmium are the main Metallic Trace Elements (MTEs) found in soils contaminated by the mining industry in Europe. MTEs are spread in the environment because of the disruption of ... [more ▼]

Zinc, lead and cadmium are the main Metallic Trace Elements (MTEs) found in soils contaminated by the mining industry in Europe. MTEs are spread in the environment because of the disruption of biogeochemical cycles caused by human activities. Due to their low mobility and biodegradability, they accumulate in soils where they are strongly bound to particles. It has become necessary to understand interactions between MTEs and the environment and to implement remediation actions. This work is focused on remediation monitoring techniques by using whole cell microbial biosensors able to detect zinc, lead and cadmium. Biosensors provide a signal in response to the bio-available concentration in MTEs, which are valuable for the design of efficient techniques involving bioremediation. Whole cell biosensors used in this work are based on Escherichia coli strains carrying a fluorescent reporter system. The reporter element contains a promoter sensitive to MTEs and a gene coding for the Green Fluorescent Protein (GFP). MTEs activate the synthesis of GFP, which is a very stable protein, causing the accumulation of GFP inside the cells. Then, fluorescence can be measured by flow cytometry. In this study, two biosensors were investigated: E. coli pPzraPgfp and E. coli pPzntAgfp. The last strain provided a linear response to zinc up to 20 mg/l and a curvilinear response to cadmium up to 0.15 mg/l. No detection was highlighted regarding lead. In practical cases, soils and wastes are contaminated by several types of MTEs. Consequently, combined contaminations were also tested. This work allowed highlighting that the strain E. coli pPzntAgfp can be used to assess the bioavailability of cadmium in soils, although the experimental procedure must be improved. This work is supported by the BioRefine Project, a European project in which various member states focus on recovery of inorganics from organic wastestreams. We gratefully acknowledge the INTERREG IVB NWE programme, which financed the BioRefine Project (ref. 320J-BIOREFINE). [less ▲]

Detailed reference viewed: 106 (8 ULg)
Full Text
Peer Reviewed
See detailMultidisciplinary approaches and fractionations to study lower termite symbiotic system and ligno-cellulose digestion
Bauwens, Julien ULg; Brasseur, Catherine ULg; Tarayre, Cédric ULg et al

Poster (2014, August)

Wood-feeding termites are a considerable source of enzymes active on ligno-cellulosic compounds. These enzymes are produced by the termite host and some representatives of its symbiotic microbial ... [more ▼]

Wood-feeding termites are a considerable source of enzymes active on ligno-cellulosic compounds. These enzymes are produced by the termite host and some representatives of its symbiotic microbial community, and are of particular interest in regard second generation biofuel. However, the complexity of microbial interactions renders micro-organisms isolation very difficult. Culture-independent methods permitted to gather a large amount of data and to understand a little more the role of each microbial population, particularly the prokaryotes. Proteomics allows working on the final product of gene expression, and corresponds more to the real operation of the digestive system. In order to investigate such a complex system, it is necessary to use multidisciplinary approaches and to fractionate this system. Zymography or affinity chromatography are used in parallel of routine proteomics techniques such as two-dimensional gel electrophoresis associated to MALDI-TOF mass spectrometry and nano-LC ESI-MS/MS. We used an artificial-diet based rearing to induce changes in microbial population balance. We performed preliminary assay to investigate the glycosylated proteome in the hindgut of a lower termite, using Multi-Lectin Affinity Chromatography (M-LAC) and enzymatic activity of harvested fractions was assessed on cellulosic substrates. [less ▲]

Detailed reference viewed: 41 (13 ULg)
Full Text
Peer Reviewed
See detailBiorefine: Recovery of nutrients and metallic trace elements from different wastes by chemical and biochemical processes
Tarayre, Cédric ULg; Fischer, Christophe ULg; De Clercq, Lies et al

Conference (2014, June 05)

At present, most waste processing operations are not oriented towards the valorization of valuable reusable components such as nitrogen, phosphorus, potassium and even Metallic Trace Elements (MTEs ... [more ▼]

At present, most waste processing operations are not oriented towards the valorization of valuable reusable components such as nitrogen, phosphorus, potassium and even Metallic Trace Elements (MTEs). Currently, sewage sludge, for example is usually used as a fertilizer in agriculture, in energy production or in the field of construction. Ashes originating from sludge incineration contain heavy metals and minerals in large quantities. Manure is mainly used in agriculture, although considerable amounts of nutrients are lost and cause pollution. Digestate is also used in agriculture, but other alternatives have been proposed, such as the energetic valorization. Better valorization of these wastes in agriculture (or other sectors) is however largely constrained by a multitude of legal requirements. An important problematic point is the concentration in MTEs that is found in those wastes. Consequently, recovery of nutrients and MTEsmay be a key solution for optimal valorization of wastes. Many unit operations used in the field of chemical and biochemical engineering (mechanical operations on fluids, solids, mass and heat transfers, chemical reactions, etc.) could be used in order to achieve an efficient recovery yield of nutrients and trace elements. The aim of the BioRefine Project is to make an inventory of all recovery techniques of nutrients and MTEs in five countries: Belgium, France, Germany, United Kingdom and The Netherlands. Pilot plants will also be tested to assess the efficiency of new treatment techniques after which the most efficient processes will be chosen to be applied on a larger scale. In addition, the collected data will be used to propose exploitation scenarios taking into account legal constraints and optimized logistics.This work is supported through an INTERREG IVB NWE programme(ref. 320J-BIOREFINE). [less ▲]

Detailed reference viewed: 54 (12 ULg)
Full Text
Peer Reviewed
See detailResearch of phosphate accumulating microorganisms from WWTPs for the recovery of phosphorus from organic wastes (3BV.3.47)
Tarayre, Cédric ULg; Michels, Evi; Buysse, Jeroen et al

Poster (2014, June)

Many wastes containing reusable components, such as nitrogen, phosphorus and potassium, are not exploited through ideal processes. As an example, in Wallonia (Belgium), the main treatment applied to ... [more ▼]

Many wastes containing reusable components, such as nitrogen, phosphorus and potassium, are not exploited through ideal processes. As an example, in Wallonia (Belgium), the main treatment applied to sewage sludge consists in incinerating the material. Such a process is chosen when the heavy metals are too concentrated in the sludge, preventing an agricultural use. However, sewage sludge, as well as manure, slurry and digestate, contain notable amounts of nutrients (nitrogen, phosphorus and potassium). Some Waste Water Treatment Plants (WWTPs) are actually designed in order to promote Phosphate Accumulating Organisms (PAOs), able to store or release phosphorus in accordance with the environmental conditions. The aim of this work is to isolate PAOs from WWTPs and evaluate their applicability to phosphorus recovery from organic wastes. Metagenomics and metabolic properties are also considered. This work is supported by the BioRefine Project, a European project in which various member states focus on recovery of inorganics from organic wastestreams. [less ▲]

Detailed reference viewed: 30 (2 ULg)
Full Text
Peer Reviewed
See detailIsolation of an amylolytic chrysophyte, Poterioochromonas sp. from the digestive tract of the termite R. santonensis
Tarayre, Cédric ULg; Bauwens, Julien ULg; Brasseur, Catherine ULg et al

in Biotechnologie, Agronomie, Société et Environnement = Biotechnology, Agronomy, Society and Environment [=BASE] (2014), 18(1),

The aim of this work was the isolation and cultivation of amylolytic protists living in the digestive tract of the termite Reticulitermes santonensis (Feytaud). A chrysophyte identified as ... [more ▼]

The aim of this work was the isolation and cultivation of amylolytic protists living in the digestive tract of the termite Reticulitermes santonensis (Feytaud). A chrysophyte identified as Poterioochromonas sp. was isolated in a special medium containing rice grains as a source of carbon and nitrogen. Then, the protist was grown in a medium containing starch as a carbon source, tryptone, and a phosphate buffer at different pH values (5, 6 and 7). Yeast extract was added or not. Ciprofloxacin was used to avoid the bacterial development. Other antibiotics were also tested but showed an inhibitive effect on the growth of Poterioochromonas sp. Yeast extract allowed reaching 1.9 (pH 5), 2.3 (pH 6) and 2.2 (pH 7) times higher final cell concentrations, and 2.8 (pH 5), 2.8 (pH 6) and 2.2 (pH 7) times higher biomass yields. The starch concentration did not decrease in the medium until 3 and 4 days of culture, with and without yeast extract, respectively. Eight days of culture were necessary for hydrolyzing the starch completely, with and without yeast extract. Maltose and maltotriose were detected in the culture media and were hydrolyzed progressively. Maximal maltose concentrations were 0.68, 0.66 and 0.51 g.l-1 in the medium containing yeast extract. Maltotriose concentrations were only 0.17, 0.14 and 0.12 g.l-1. Other glucose oligomers were also detected but in lower quantities. It was determined that the protist developed a weak amylase activity, particularly at a weakly acidic pH (5-6). Such a pH also allowed a better growth of the protist. A maximal amylase activity of 112 nkat.l-1 was measured with yeast extract at pH 5. No other enzymatic activity (protease, cellulase or xylanase) was detected except amylase. The degradation products of starch which were obtained by enzymatic hydrolysis allow the identification of α-amylase, amyloglucosidase and possibly β-amylase activities. [less ▲]

Detailed reference viewed: 121 (26 ULg)