References of "Svaldo Lanero, Tiziana"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Dynamics of Complex Formation between Amylose Brushes on Gold and Fatty Acids by QCM‐D
Cao, Zheng; Tsoufis, Theodoros; Svaldo Lanero, Tiziana ULg et al

in Biomacromolecules (2013), 14

Detailed reference viewed: 21 (4 ULg)
Full Text
Peer Reviewed
See detailThe pulling force of a tiny synthetic molecular machine
Svaldo Lanero, Tiziana ULg; Duwez, Anne-Sophie ULg

in Europhysics News (2013), 44

Detailed reference viewed: 46 (13 ULg)
Full Text
Peer Reviewed
See detailFunctional nanogels as platforms for imparting antibacterial, antibiofilm, and antiadhesion activities to stainless steel
Faure, Emilie ULg; Falentin, Céline ULg; Svaldo Lanero, Tiziana ULg et al

in Advanced Functional Materials (2012), 22(24), 5271-5282

In this work, long-term antibacterial, antiadhesion, and antibiofilm activities are afforded to industrial stainless steel surfaces following a green and bio-inspired strategy. Starting from catechol ... [more ▼]

In this work, long-term antibacterial, antiadhesion, and antibiofilm activities are afforded to industrial stainless steel surfaces following a green and bio-inspired strategy. Starting from catechol bearing synthetic polymers, the film cross-linking and the grafting of active (bio)molecules are possible under environmentally friendly conditions (in aqueous media and at room temperature). A bio-inspired polyelectrolyte, a polycation-bearing catechol, is used as the film-anchoring polymer while a poly(methacrylamide)-bearing quinone groups serves as the cross-linking agent in combination with a polymer bearing primary amine groups. The amine/quinone reaction is exploited to prepare stable solutions of nanogels in water at room temperature that can be easily deposited to stainless steel. This coating provides quinonefunctionalized surfaces that are then used to covalently anchor active (bio) molecules (antibiofi lm enzyme and antiadhesion polymer) through thiol/ quinone reactions. [less ▲]

Detailed reference viewed: 135 (31 ULg)
Full Text
Peer Reviewed
See detailAntibacterial polyelectrolyte micelles for coating stainless steel
Falentin, Céline ULg; Faure, Emilie ULg; Svaldo Lanero, Tiziana ULg et al

in Langmuir (2012), 28(18), 7233-7241

In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged ... [more ▼]

In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged polyelectrolytes micelles doped with silver based nanoparticles with a polyanion. The micelles are formed by electrostatic interaction between two oppositely charged polymers, a polycation bearing 3,4-dihydroxyphenylalanine units (DOPA, a major component of natural adhesives) and a polyanion (poly(styrene sulfonate), PSS) without using any block copolymer. DOPA units are exploited for their well-known ability to anchor to stainless steel and to form and stabilize biocidal silver nanoparticles (Ag0). The chlorine counter-anion of the polycation forms and stabilizes biocidal silver chloride nanoparticles (AgCl). We demonstrate that two layers of micelles (alternated by PSS) doped by silver particles are enough to impart to the surface a strong antibacterial activity against Gram-negative E. coli. Moreover, micelles that are reservoirs of biocidal Ag+ can be easily reactivated after depletion. This novel water-based approach is convenient, simple and attractive for industrial applications. [less ▲]

Detailed reference viewed: 110 (13 ULg)
Full Text
Peer Reviewed
See detailSurface and bio-adhesion properties of new hydrophobic and current materials for artificial intraocular lens
Bertrand, Virginie ULg; Svaldo Lanero, Tiziana ULg; Duwez, Anne-Sophie ULg et al

Poster (2012)

A high bio-adhesion appears to be one of the key factor for posterior capsular opacification (PCO) prevention. Indeed, the proteins adsorption and the lens epithelial cells (LEC) adhesion both contribute ... [more ▼]

A high bio-adhesion appears to be one of the key factor for posterior capsular opacification (PCO) prevention. Indeed, the proteins adsorption and the lens epithelial cells (LEC) adhesion both contribute to PCO development. We present in this work the comparison of a new glistening free hydrophobic material (GF® from Physiol) with benchmark hydrophobic and hydrophilic materials regarding their chemicophysical properties and their respective ability to interact with lens epithelial cells and proteins. For this purpose, we determined the hydrophobicity by contact angle measurement (assessed by water drop and air bubble methods), the surface adhesiveness by atomic force microscopy (AFM), the proteins adsorption by fluorescent measurement and the LEC adhesion by the determination of cell density. The new hydrophobic material presents comparable hydrophobicity, proteins adsorption and LEC adhesion to current commercial hydrophobic material. Its adhesiveness, measured with the AFM, is intermediate between hydrophilic and hydrophobic materials. In conclusion, the bio-adhesion properties of this new glistening free hydrophobic IOL material are similar to generic hydrophobic acrylic materials and therefore should to the same extent prevent PCO. [less ▲]

Detailed reference viewed: 46 (4 ULg)
Full Text
Peer Reviewed
See detailA single synthetic small molecule that generates force against a load
Lussis, Perrine ULg; Svaldo Lanero, Tiziana ULg; Bertocco, Andrea et al

in Nature Nanotechnology (2011), 6

Some biomolecules are able to generate directional forces by rectifying random thermal motions. This allows these molecular machines to perform mechanical tasks such as intracellular cargo transport or ... [more ▼]

Some biomolecules are able to generate directional forces by rectifying random thermal motions. This allows these molecular machines to perform mechanical tasks such as intracellular cargo transport or muscle contraction in plants and animals. Although some artificial molecular machines have been synthesized and used collectively to perform mechanical tasks, so far there have been no direct measurements of mechanical processes at the single-molecule level. Here we report measurements of the mechanical work performed by a synthetic molecule less than 5 nm long. We show that biased Brownian motion of the sub-molecular components in a hydro- gen-bonded [2]rotaxane—a molecular ring threaded onto a molecular axle—can be harnessed to generate significant directional forces. We used the cantilever of an atomic force microscope to apply a mechanical load to the ring during single-molecule pulling–relaxing cycles. The ring was pulled along the axle, away from the thermodynamically favoured binding site, and was then found to travel back to this site against an external load of 30 pN. Using fluctuation theorems, we were able to relate measurements of the work done at the level of individual rotaxane molecules to the free-energy change as previously determined from ensemble measurements. The results show that individual rotaxanes can generate directional forces of similar magnitude to those generated by natural molecular machines. [less ▲]

Detailed reference viewed: 120 (35 ULg)