References of "Surdej, Jean"
     in
Bookmark and Share    
Full Text
See detailA method to search for large-scale concavities in asteroid shape models
Devogele, Maxime ULg; Rivet, Jean-Pierre; Tanga, Paolo et al

in Monthly Notices of the Royal Astronomical Society (2015)

Light curve inversion is proven to produce an unique model solution only under the hypothesis that the asteroid is convex. However, it was suggested that the resulting shape model, for the case of non ... [more ▼]

Light curve inversion is proven to produce an unique model solution only under the hypothesis that the asteroid is convex. However, it was suggested that the resulting shape model, for the case of non-convex asteroid, is the convex-hull of the true asteroid non-convex shape. While a convex shape is already useful to provide the overall aspect of the target, much information about real shapes is missed, as we know that asteroids are very irregular. It is a commonly accepted evidence that large flat areas sometimes appearing on shapes derived from light curves correspond to concave areas, but this information has not been further explored and exploited so far. We present in this paper a method that allows to predict the presence of concavities from such flat regions. This method analyzes the distribution of the local normals to the facets composing shape models to predict the presence of abnormally large flat surfaces. In order to test our approach, we consider here its application to a large family of synthetic asteroid shapes, and to real asteroids with large scale concavities, whose detailed shape is known by other kinds of observations (radar and spacecraft encounters). The method that we propose is proven to be reliable and capable of providing a qualitative indication of the relevance of concavities on well-constrained asteroid shapes derived from purely photometric data sets. [less ▲]

Detailed reference viewed: 21 (2 ULg)
Full Text
See detailRealizing the diamond annular groove phase masks for the mid infrared region: five years of successful process development of diamond plasma etching
Forsberg, Pontus; Vargas Catalan, Ernesto; Delacroix, Christian ULg et al

in Navarro, Ramon; Cunningham, Colin; Barto, Allison (Eds.) Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation (2014, August 07)

The Annular Groove Phase Mask (AGPM) is a circularly symmetric half wave plate consisting of a circular high aspect ratio sub-wavelength grating. Here we present a method for realizing such structures in ... [more ▼]

The Annular Groove Phase Mask (AGPM) is a circularly symmetric half wave plate consisting of a circular high aspect ratio sub-wavelength grating. Here we present a method for realizing such structures in diamond. To improve the AGPM performance, antireflective sub-wavelength gratings are etched on the backside of the components, and such gratings are also discussed. Components for the N-band (around 10 μm) and the L-band (around 3.8 μm) have been successfully fabricated. We are currently developing the process further to improve the precision of the gratings and produce an AGPM for the K-band (around 2.2 μm). © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
See detailThe VORTEX project: first results and perspectives
Absil, Olivier ULg; Mawet, Dimitri; Delacroix, Christian ULg et al

in Marchetti, Enrico; Close, Laird; Véran, Jean-Pierre (Eds.) Adaptive Optics Systems IV (2014, July 21)

Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They feature a very small inner working angle (down to the ... [more ▼]

Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They feature a very small inner working angle (down to the diffraction limit of the telescope), a clear 360 degree discovery space, have demonstrated very high contrast capabilities, are easy to implement on high-contrast imaging instruments, and have already been extensively tested on the sky. Since 2005, we have been designing, developing and testing an implementation of the charge-2 vector vortex phase mask based on concentric sub-wavelength gratings, referred to as the Annular Groove Phase Mask (AGPM). Science-grade mid-infrared AGPMs were produced in 2012 for the first time, using plasma etching on synthetic diamond substrates. They have been validated on a coronagraphic test bench, showing broadband peak rejection up to 500:1 in the L band, which translates into a raw contrast of about 6e-5 at 2λ/D. Three of them have now been installed on world-leading diffraction-limited infrared cameras, namely VLT/NACO, VLT/VISIR and LBT/LMIRCam. During the science verification observations with our L-band AGPM on NACO, we observed the beta Pictoris system and obtained unprecedented sensitivity limits to planetary companions down to the diffraction limit (0.1"). More recently, we obtained new images of the HR 8799 system at L band during the AGPM first light on LMIRCam. After reviewing these first results obtained with mid-infrared AGPMs, we will discuss the short- and mid-term goals of the on-going VORTEX project, which aims to improve the performance of our vortex phase masks for future applications on second-generation high-contrast imager and on future extremely large telescopes (ELTs). In particular, we will briefly describe our current efforts to improve the manufacturing of mid-infrared AGPMs, to push their operation to shorter wavelengths, and to provide deeper starlight extinction by creating new designs for higher topological charge vortices. Within the VORTEX project, we also plan to develop new image processing techniques tailored to coronagraphic images, and to study some pre- and post-coronagraphic concepts adapted to the vortex coronagraph in order to reduce scattered starlight in the final images. [less ▲]

Detailed reference viewed: 80 (33 ULg)
Full Text
See detailThe VORTEX coronagraphic test bench
Jolivet, Aïssa ULg; Piron, Pierre ULg; Huby, Elsa ULg et al

in Navarro, Ramon; Cunningham, Colin; Barto, Allison (Eds.) Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation (2014, July 18)

In this paper, we present the infrared coronagraphic test bench of the University of Liège named VODCA (Vortex Optical Demonstrator for Coronagraphic Applications). The goal of the bench is to assess the ... [more ▼]

In this paper, we present the infrared coronagraphic test bench of the University of Liège named VODCA (Vortex Optical Demonstrator for Coronagraphic Applications). The goal of the bench is to assess the performances of the Annular Groove Phase Masks (AGPMs) at near- to mid-infrared wavelengths. The AGPM is a subwavelength grating vortex coronagraph of charge two (SGVC2) made out of diamond. The bench is designed to be completely achromatic and will be composed of a super continuum laser source emitting in the near to mid-infrared, several parabolas, diaphragms and an infrared camera. This way, we will be able to test the different AGPMs in the M, L, K and H bands. Eventually, the bench will also allow the computation of the incident wavefront aberrations on the coronagraph. A reflective Lyot stop will send most of the stellar light to a second camera to perform low-order wavefront sensing. This second system coupled with a deformable mirror will allow the correction of the wavefront aberrations. We also aim to test other pre- and/or post-coronagraphic concepts such as optimal apodization. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. [less ▲]

Detailed reference viewed: 22 (8 ULg)
Full Text
See detailDevelopment of a subwavelength grating vortex coronagraph of topological charge 4 (SGVC4)
Delacroix, Christian ULg; Absil, Olivier ULg; Carlomagno, Brunella ULg et al

in Ramsay, Suzanne; McLean, Ian; Takami, Hideki (Eds.) Ground-based and Airborne Instrumentation for Astronomy V (2014, July 08)

One possible solution to achieve high contrast direct imaging at a small inner working angle (IWA) is to use a vector vortex coronagraph (VVC), which provides a continuous helical phase ramp in the focal ... [more ▼]

One possible solution to achieve high contrast direct imaging at a small inner working angle (IWA) is to use a vector vortex coronagraph (VVC), which provides a continuous helical phase ramp in the focal plane of the telescope with a phase singularity in its center. Such an optical vortex is characterized by its topological charge, i.e., the number of times the phase accumulates 2pi radians along a closed path surrounding the singularity. Over the past few years, we have been developing a charge-2 VVC induced by rotationally symmetric subwavelength gratings (SGVC2), also known as the Annular Groove Phase Mask (AGPM). Since 2013, several SGVC2s (or AGPMs) were manufactured using synthetic diamond substrate, then validated on dedicated optical benches, and installed on 10-m class telescopes. Increasing the topological charge seems however mandatory for cancelling the light of bright stars which will be partially resolved by future Extremely Large Telescopes in the near-infrared. In this paper, we first detail our motivations for developing an SGVC4 (charge 4) dedicated to the near-infrared domain. The challenge lies in the design of the pattern which is unrealistic in the theoretically perfect case, due to state-of-the-art manufacturing limitations. Hence, we propose a new realistic design of SGVC4 with minimized discontinuities and optimized phase ramp, showing conclusive improvements over previous works in this field. A preliminary validation of our concept is given based on RCWA simulations, while full 3D finite-difference time-domain simulations (and eventually laboratory tests) will be required for a final validation. [less ▲]

Detailed reference viewed: 18 (4 ULg)
Full Text
See detailMid-IR AGPMs for ELT applications
Carlomagno, Brunella ULg; Delacroix, Christian ULg; Absil, Olivier ULg et al

in Ramsay, Suzanne; McLean, Ian; Takami, Hideki (Eds.) Ground-based and Airborne Instrumentation for Astronomy V (2014, July 08)

The mid-infrared region is well suited for exoplanet detection thanks to the reduced contrast between the planet and its host star with respect to the visible and near-infrared wavelength regimes. This ... [more ▼]

The mid-infrared region is well suited for exoplanet detection thanks to the reduced contrast between the planet and its host star with respect to the visible and near-infrared wavelength regimes. This contrast may be further improved with Vector Vortex Coronagraphs (VVCs), which allow us to cancel the starlight. One flavour of the VVC is the AGPM (Annular Groove Phase Mask), which adds the interesting properties of subwavelength gratings (achromaticity, robustness) to the already known properties of the VVC. In this paper, we present the optimized designs, as well as the expected performances of mid-IR AGPMs etched onto synthetic diamond substrates, which are considered for the E-ELT/METIS instrument. [less ▲]

Detailed reference viewed: 22 (5 ULg)
Full Text
See detailObserving the Sun with micro-interferometric devices: a didactic experiment
Defrere, D.; Absil, Olivier ULg; Hanot, C. et al

in Surdej, Jean; Le Coroller, Hervé; Arnold, Luc (Eds.) Improving the Performances of Current Optical Interferometers & Future Designs (2014, April 01)

Measuring the angular diameter of celestial bodies has long been the main purpose of stellar interferometry and was its historical motivation. Nowadays, stellar interferometry is widely used for various ... [more ▼]

Measuring the angular diameter of celestial bodies has long been the main purpose of stellar interferometry and was its historical motivation. Nowadays, stellar interferometry is widely used for various other scientific purposes that require very high angular resolution measurements. In terms of angular spatial scales probed, o [less ▲]

Detailed reference viewed: 28 (3 ULg)
Full Text
See detailL'-band AGPM vector vortex coronagraph's first light on LBTI/LMIRCAM
Defrere, D.; Absil, Olivier ULg; Hinz, P. et al

Poster (2014, March)

We present the first science observations obtained with the L'-band AGPM coronagraph recently installed on LBTI/LMIRCAM. The AGPM (Annular Groove Phase Mask) is a vector vortex coronagraph made from ... [more ▼]

We present the first science observations obtained with the L'-band AGPM coronagraph recently installed on LBTI/LMIRCAM. The AGPM (Annular Groove Phase Mask) is a vector vortex coronagraph made from diamond sub-wavelength gratings tuned to the L'-band. It is designed to improve the sensitivity and dynamic range of high-resolution imaging at very small inner working a [less ▲]

Detailed reference viewed: 31 (7 ULg)
Full Text
Peer Reviewed
See detailA Super-Jupiter orbiting a late-type star: A refined analysis of microlensing event OGLE-2012-BLG-0406
Tsapras, Y.; Choi, J.-Y.; Street, R. A. et al

in Astrophysical Journal (2014), 782

We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the lightcurve ... [more ▼]

We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the lightcurve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a $2.73\pm 0.43\ M_{\rm J}$ planet orbiting a $0.44\pm 0.07\ M_{\odot}$ early M-type star. The distance to the lens is $4.97\pm 0.29$\ kpc and the projected separation between the host star and its planet at the time of the event is $3.45\pm 0.26$ AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens. [less ▲]

Detailed reference viewed: 54 (3 ULg)
Full Text
See detailCompanion search around β Pictoris with the newly commissioned L'-band vector vortex coronagraph on VLT/NACO
Mawet, D.; Absil, Olivier ULg; Milli, J. et al

in Booth, Mark; Matthews, Brenda; Graham, James (Eds.) Exploring the Formation and Evolution of Planetary Systems (2014, January 01)

Here we present the installation and successful commissioning of an L'-band Annular Groove Phase Mask (AGPM) coronagraph on VLT/NACO. The AGPM is a vector vortex coronagraph made from diamond ... [more ▼]

Here we present the installation and successful commissioning of an L'-band Annular Groove Phase Mask (AGPM) coronagraph on VLT/NACO. The AGPM is a vector vortex coronagraph made from diamond subwavelength gratings tuned to the L' band. The vector vortex coronagraph enables high contrast imaging at very small inner working angle (here 0''.09, the diffraction limit of the VLT at L'), potentially being the key to a new parameter space. During technical and science verification runs, we discovered a late-type companion at two beamwidths from an F0V star (Mawet et al. 2013), and imaged the inner regions of β Pictoris down to the previously unexplored projected radius of 1.75 AU. The circumstellar disk was also resolved from ~= 1'' to 5'' (see J. Milli et al., these proceedings). These results showcase the potential of the NACO L-band AGPM over a wide range of spatial scales. [less ▲]

Detailed reference viewed: 34 (8 ULg)
Full Text
Peer Reviewed
See detailPlanet Formation Imager (PFI): Introduction and technical considerations
Monnier, J. D.; Kraus, S.; Buscher, D. et al

in Proceedings of SPIE - The International Society for Optical Engineering (2014), 9146

Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming ... [more ▼]

Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming into focus. High resolution imaging at a range of wavelengths will give us a glimpse into the past of our own solar system and enable a robust theoretical framework for predicting planetary system architectures around a range of stars surrounded by disks with a diversity of initial conditions. Only long-baseline interferometry can provide the needed angular resolution and wavelength coverage to reach these goals and from here we launch our planning efforts. The aim of the "Planet Formation Imager" (PFI) project is to develop the roadmap for the construction of a new near-/mid-infrared interferometric facility that will be optimized to unmask all the major stages of planet formation, from initial dust coagulation, gap formation, evolution of transition disks, mass accretion onto planetary embryos, and eventual disk dispersal. PFI will be able to detect the emission of the cooling, newlyformed planets themselves over the first 100 Myrs, opening up both spectral investigations and also providing a vibrant look into the early dynamical histories of planetary architectures. Here we introduce the Planet Formation Imager (PFI) Project (www.planetformationimager.org) and give initial thoughts on possible facility architectures and technical advances that will be needed to meet the challenging top-level science requirements. © 2014 SPIE. [less ▲]

Detailed reference viewed: 4 (2 ULg)
Full Text
Peer Reviewed
See detailThe science case for the Planet Formation Imager (PFI)
Kraus, S.; Monnier, J.; Harries, T. et al

in Proceedings of SPIE - The International Society for Optical Engineering (2014), 9146

Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar ... [more ▼]

Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work has already been, and is still being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project (PFI; http://www.planetformationimager.org) has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planethosting disks in the nearest star-forming regions. In this contribution we outline the primary science case of PFI. For this purpose, we briefly review our knowledge about the planet-formation process and discuss recent observational results that have been obtained on the class of transition disks. Spectro-photometric and multi-wavelength interferometric studies of these systems revealed the presence of extended gaps and complex density inhomogeneities that might be triggered by orbiting planets. We present detailed 3-D radiation-hydrodynamic simulations of disks with single and multiple embedded planets, from which we compute synthetic images at near-infrared, mid-infrared, far-infrared, and sub-millimeter wavelengths, enabling a direct comparison of the signatures that are detectable with PFI and complementary facilities such as ALMA. From these simulations, we derive some preliminary specifications that will guide the array design and technology roadmap of the facility. © 2014 SPIE. [less ▲]

Detailed reference viewed: 7 (1 ULg)
Full Text
Peer Reviewed
See detailProbing liquid mirror surface quality using the charge coupled device triangulation technique
Finet, François; Surdej, Jean ULg

in Optical Engineering : The Journal of the Society of Photo-Optical Instrumentation Engineers (2014)

Detailed reference viewed: 10 (6 ULg)
Full Text
Peer Reviewed
See detailPhysical properties and transmission spectrum of the WASP-80 planetary system from multi-colour photometry
Mancini, L.; Southworth, J.; Ciceri, S. et al

in Astronomy and Astrophysics (2013), 1312

WASP-80 is one of only two systems known to contain a hot Jupiter which transits its M-dwarf host star. We present eight light curves of one transit event, obtained simultaneously using two defocussed ... [more ▼]

WASP-80 is one of only two systems known to contain a hot Jupiter which transits its M-dwarf host star. We present eight light curves of one transit event, obtained simultaneously using two defocussed telescopes. These data were taken through the Bessell I, Sloan griz and near-infrared JHK passbands. We use our data to search for opacity-induced changes in the planetary radius, but find that all values agree with each other. Our data are therefore consistent with a flat transmission spectrum to within the observational uncertainties. We also measure an activity index of the host star of log R'_HK=-4.495, meaning that WASP-80A shows strong chromospheric activity. The non-detection of starspots implies that, if they exist, they must be small and symmetrically distributed on the stellar surface. We model all available optical transit light curves to obtain improved physical properties and orbital ephemerides for the system. [less ▲]

Detailed reference viewed: 16 (0 ULg)
Full Text
Peer Reviewed
See detailSearching for companions down to 2 AU from β Pictoris using the L'-band AGPM coronagraph on VLT/NACO
Absil, Olivier ULg; Milli, J.; Mawet, D. et al

in Astronomy and Astrophysics (2013), 559

Context. The orbit of the giant planet discovered around β Pic is slightly inclined with respect to the outer parts of the debris disc, which creates a warp in the inner debris disc. This inclination ... [more ▼]

Context. The orbit of the giant planet discovered around β Pic is slightly inclined with respect to the outer parts of the debris disc, which creates a warp in the inner debris disc. This inclination might be explained by gravitational interactions with other planets. <BR /> Aims: We aim to search for additional giant planets located at smaller angular separations from the star. <BR /> Methods: We used the new L'-band AGPM coronagraph on VLT/NACO, which provides an exquisite inner working angle. A long observing sequence was obtained on β Pic in pupil-tracking mode. To derive sensitivity limits, the collected images were processed using a principal-component analysis technique specifically tailored to angular differential imaging. <BR /> Results: No additional planet is detected down to an angular separation of 0.''2with a sensitivity better than 5 M[SUB]Jup[/SUB]. Meaningful upper limits (<10 M[SUB]Jup[/SUB]) are derived down to an angular separation of 0.''1, which corresponds to 2 AU at the distance of β Pic. [less ▲]

Detailed reference viewed: 31 (7 ULg)
Full Text
Peer Reviewed
See detailUse of the Fourier transform to derive the gravitational lens deflection angle
Wertz, Olivier ULg; Surdej, Jean ULg

in Monthly Notices of the Royal Astronomical Society (2013), 437

Knowing that the gravitational lens deflection angle can be expressed as the convolution product between the dimensionless surface mass density κ(x) and a simple function of the scaled impact parameter ... [more ▼]

Knowing that the gravitational lens deflection angle can be expressed as the convolution product between the dimensionless surface mass density κ(x) and a simple function of the scaled impact parameter vector x, we make use of the Fourier transform to derive its analytical expression for the case of mass distributions presenting a homoeoidal sym- metry. For this family of models, we obtain the expression of the two components of the deflection angle in the form of integrals performed over the radial coordinate ρ. In the limiting case of axially symmetric lenses, we obviously retrieve the well-known relation α(x)∝ M(≤ |x|)x/|x|^2. Furthermore, we derive explicit solutions for the deflection angle characterized by dimensionless surface mass density profiles such as κ ∝ (ρ^2c + ρ^2)^{−ν}; corresponding to the non-singular isothermal ellipsoid (NSIE) model for the particular case ν = 1/2. Let us insist that all these results are obtained without using the complex formal- ism introduced by Bourassa and Kantowski (1973,1975). Further straightforward applica- tions of this Fourier approach are suggested in the conclusions of the present work. [less ▲]

Detailed reference viewed: 56 (2 ULg)
Full Text
Peer Reviewed
See detailThe Gaia astrophysical parameters inference system (Apsis). Pre-launch description
Bailer-Jones, C. A. L.; Andrae, R.; Arcay, B. et al

in Astronomy and Astrophysics (2013), 559

The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial ... [more ▼]

The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial velocities for over one hundred million stars. Its main objective is to take a census of the stellar content of our Galaxy, with the goal of revealing its formation and evolution. Gaia's unique feature is the measurement of parallaxes and proper motions with hitherto unparalleled accuracy for many objects. As a survey, the physical properties of most of these objects are unknown. Here we describe the data analysis system put together by the Gaia consortium to classify these objects and to infer their astrophysical properties using the satellite's data. This system covers single stars, (unresolved) binary stars, quasars, and galaxies, all covering a wide parameter space. Multiple methods are used for many types of stars, producing multiple results for the end user according to different models and assumptions. Prior to its application to real Gaia data the accuracy of these methods cannot be assessed definitively. But as an example of the current performance, we can attain internal accuracies (RMS residuals) on F,G,K,M dwarfs and giants at G=15 (V=15-17) for a wide range of metallicites and interstellar extinctions of around 100K in effective temperature (Teff), 0.1mag in extinction (A0), 0.2dex in metallicity ([Fe/H]), and 0.25dex in surface gravity (logg). The accuracy is a strong function of the parameters themselves, varying by a factor of more than two up or down over this parameter range. After its launch in November 2013, Gaia will nominally observe for five years, during which the system we describe will continue to evolve in light of experience with the real data. [less ▲]

Detailed reference viewed: 41 (20 ULg)
Full Text
Peer Reviewed
See detailPhysical properties, transmission and emission spectra of the WASP-19 planetary system from multi-colour photometry
Mancini, L.; Ciceri, S.; Chen, G. et al

in Monthly Notices of the Royal Astronomical Society (2013), 436

We present new ground-based, multi-colour, broad-band photometric measurements of the physical parameters, transmission and emission spectra of the transiting extrasolar planet WASP-19b. The measurements ... [more ▼]

We present new ground-based, multi-colour, broad-band photometric measurements of the physical parameters, transmission and emission spectra of the transiting extrasolar planet WASP-19b. The measurements are based on observations of eight transits and four occultations through a Gunn i filter using the 1.54-m Danish Telescope, 14 transits through an R[SUB]c[/SUB] filter at the Perth Exoplanet Survey Telescope (PEST) observatory and one transit observed simultaneously through four optical (Sloan g[SUP]'[/SUP], r[SUP]'[/SUP], i[SUP]'[/SUP], z[SUP]'[/SUP]) and three near-infrared (J, H, K) filters, using the Gamma Ray Burst Optical and Near-Infrared Detector (GROND) instrument on the MPG/ESO 2.2-m telescope. The GROND optical light curves have a point-to-point scatter around the best-fitting model between 0.52 and 0.65 mmag rms. We use these new data to measure refined physical parameters for the system. We find the planet to be more bloated (R[SUB]b[/SUB] = 1.410 ± 0.017R[SUB]Jup[/SUB]; M[SUB]b[/SUB] = 1.139 ± 0.030M[SUB]Jup[/SUB]) and the system to be twice as old as initially thought. We also used published and archived data sets to study the transit timings, which do not depart from a linear ephemeris. We detected an anomaly in the GROND transit light curve which is compatible with a spot on the photosphere of the parent star. The starspot position, size, spot contrast and temperature were established. Using our new and published measurements, we assembled the planet's transmission spectrum over the 370-2350 nm wavelength range and its emission spectrum over the 750-8000 nm range. By comparing these data to theoretical models we investigated the theoretically predicted variation of the apparent radius of WASP-19b as a function of wavelength and studied the composition and thermal structure of its atmosphere. We conclude that: (i) there is no evidence for strong optical absorbers at low pressure, supporting the common idea that the planet's atmosphere lacks a dayside inversion; (ii) the temperature of the planet is not homogenized, because the high warming of its dayside causes the planet to be more efficient in re-radiating than redistributing energy to the night side; (iii) the planet seems to be outside of any current classification scheme. [less ▲]

Detailed reference viewed: 26 (7 ULg)
Full Text
See detailSmall-angle, high-contrast exoplanet imaging with the L-band AGPM vector vortex coronagraph now offered at the VLT
Mawet, Dimitri; Absil, Olivier ULg; Milli, Julien et al

in Shaklan, Stuart (Ed.) Techniques and Instrumentation for Detection of Exoplanets VI (2013, September 26)

In November 2012, we installed an L-band annular groove phase mask (AGPM) vector vortex coronagraph (VVC) inside NACO, the adaptive optics camera of ESO's Very Large Telescope. The mask, made out of ... [more ▼]

In November 2012, we installed an L-band annular groove phase mask (AGPM) vector vortex coronagraph (VVC) inside NACO, the adaptive optics camera of ESO's Very Large Telescope. The mask, made out of diamond subwavelength gratings has been commissioned, science qualified, and is now offered to the community. Here we report ground-breaking on-sky performance levels in terms of contrast, inner working angle, and discovery space. This new practical demonstration of the VVC, coming a few years after Palomar's and recent record-breaking lab experiments in the visible (E. Serabyn et al. 2013, these proceedings), shows once again that this new-generation coronagraph has reached a high level of maturity. [less ▲]

Detailed reference viewed: 14 (3 ULg)
Full Text
See detail1er Cours de Mécanique Analytique II (2012-14), Bac3 math & phys fichier pdf+vidéo
Surdej, Jean ULg

Learning material (2013)

Detailed reference viewed: 340 (44 ULg)