References of "Struman, Ingrid"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNeoadjuvant chemotherapy in breast cancer induces miR-34a and miR-122 expression
FRERES, Pierre ULg; JOSSE, Claire ULg; Bovy, Nicolas ULg et al

in Journal of Cellular Physiology (2014)

Circulating microRNAs (miRNAs) have been extensively studied in cancer as biomarkers but little is known regarding the influence of anti-cancer drugs on their expression levels. In this article, we ... [more ▼]

Circulating microRNAs (miRNAs) have been extensively studied in cancer as biomarkers but little is known regarding the influence of anti-cancer drugs on their expression levels. In this article, we describe the modifications of circulating miRNAs profile after neoadjuvant chemotherapy (NAC) for breast cancer. The expression of 188 circulating miRNAs was assessed in the plasma of 25 patients before and after NAC by RT-qPCR. Two miRNAs, miR- 34a and miR-122, that were significantly increased after NAC, were measured in tumor tissue before and after chemotherapy in 7 patients with pathological partial response (pPR) to NAC. These 2 chemotherapy-induced miRNAs were further studied in the plasma of 22 patients with adjuvant chemotherapy (AC) as well as in 12 patients who did not receive any chemotherapy. Twenty-five plasma miRNAs were modified by NAC. Among these miRNAs, miR-34a and miR-122 were highly upregulated, notably in pPR patients with aggressive breast cancer. Furthermore, miR-34a level was elevated in the remaining tumor tissue after NAC treatment. Studying the kinetics of circulating miR-34a and miR-122 expression during NAC revealed that their levels were especially increased after anthracycline-based chemotherapy. Comparisons of the plasma miRNA profiles after NAC and AC suggested that chemotherapy-induced miRNAs originated from both tumoral and non-tumoral compartments. This study is the first to demonstrate that NAC specifically induces miRNA expression in plasma and tumor tissue, which might be involved in the anti-tumor effects of chemotherapy in breast cancer patients. [less ▲]

Detailed reference viewed: 34 (10 ULg)
Peer Reviewed
See detailGrowth Factors-Induced Angiogenesis Requires uPAR on Endothelial Cells
Paques, Cécile ULg; Herkenne, Stéphanie ULg; Pollenus, Thomas et al

Poster (2014, May)

Detailed reference viewed: 14 (3 ULg)
Full Text
Peer Reviewed
See detailPAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin.
Bajou, Khalid ULg; Herkenne, Stéphanie ULg; Thijssen, Victor L. et al

in Nature Medicine (2014), sous presse

The N-terminal fragment of prolactin (16K PRL) inhibits tumor growth by impairing angiogenesis, but the underlying mechanisms are unknown. Here, we found that 16K PRL binds the fibrinolytic inhibitor ... [more ▼]

The N-terminal fragment of prolactin (16K PRL) inhibits tumor growth by impairing angiogenesis, but the underlying mechanisms are unknown. Here, we found that 16K PRL binds the fibrinolytic inhibitor plasminogen activator inhibitor-1 (PAI-1), which is known to contextually promote tumor angiogenesis and growth. Loss of PAI-1 abrogated the antitumoral and antiangiogenic effects of 16K PRL. PAI-1 bound the ternary complex PAI-1-urokinase-type plasminogen activator (uPA)-uPA receptor (uPAR), thereby exerting antiangiogenic effects. By inhibiting the antifibrinolytic activity of PAI-1, 16K PRL also protected mice against thromboembolism and promoted arterial clot lysis. Thus, by signaling through the PAI-1-uPA-uPAR complex, 16K PRL impairs tumor vascularization and growth and, by inhibiting the antifibrinolytic activity of PAI-1, promotes thrombolysis. [less ▲]

Detailed reference viewed: 36 (16 ULg)
Full Text
Peer Reviewed
See detailmiRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization.
Valencia, Karmele; Luis-Ravelo, Diego; Bovy, Nicolas ULg et al

in Molecular oncology (2014), 8(3), 689-703

Bone metastasis represents one of the most deleterious clinical consequences arising in the context of many solid tumors. Severe osteolysis results from tumor cell colonization of the bone compartment, a ... [more ▼]

Bone metastasis represents one of the most deleterious clinical consequences arising in the context of many solid tumors. Severe osteolysis results from tumor cell colonization of the bone compartment, a process which entails reciprocal exchange of soluble signals between tumor cells and their osseous microenvironment. Recent evidence indicates that tumor-intrinsic miRNAs are pleiotropic regulators of gene expression. But they are also frequently released in exosome-like vesicles (ELV). Yet the functional relevance of the transference of tumor-derived ELV and their miRNA cargo to the extracellular milieu during osseous colonization is unknown. Comparative transcriptomic profiling using an in vivo murine model of bone metastasis identified a repressed miRNA signature associated with high prometastatic activity. Forced expression of single miRNAs identified miR-192 that markedly appeased osseous metastasis in vivo, as shown by X-ray, bioluminescence imaging and microCT scans. Histological examination of metastatic lesions revealed impaired tumor-induced angiogenesis in vivo, an effect that was associated in vitro with decreased hallmarks of angiogenesis. Isolation and characterization of ELV by flow cytometry, Western blot analysis, transmission electron microscopy and nanoparticle tracking analysis revealed the ELV cargo enrichment in miR-192. Consistent with these findings, fluorescent labeled miR-192-enriched-ELV showed the in vitro transfer and release of miR-192 in target endothelial cells and abrogation of the angiogenic program by repression of proangiogenic IL-8, ICAM and CXCL1. Moreover, in vivo infusion of fluorescent labeled ELV efficiently targeted cells of the osseous compartment. Furthermore, treatment with miR-192 enriched ELV in a model of in vivo bone metastasis pre-conditioned osseous milieu and impaired tumor-induced angiogenesis, thereby reducing the metastatic burden and tumor colonization. Changes in the miRNA-cargo content within ELV represent a novel mechanism heavily influencing bone metastatic colonization, which is most likely relevant in other target organs. Mechanistic mimicry of this phenomenon by synthetic nanoparticles could eventually emerge as a novel therapeutic approach. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Peer Reviewed
See detailEndothelium-specific expression of the microRNA miR-146a by using the RCAS system
Fontaine, Marie ULg; Halkein, Julie; Tabruyn, Sébastien et al

Poster (2013, May 17)

Detailed reference viewed: 6 (1 ULg)
Full Text
See detailLymphangiogenesis and extracellular matrix remodeling
Erpicum, Charlotte ULg; Detry, Benoît ULg; Paupert, Jenny ULg et al

Conference (2013, January 28)

Detailed reference viewed: 40 (11 ULg)
Full Text
Peer Reviewed
See detailLaser-induced choroidal neovascularization model to study age-related macular degeneration in mice.
LAMBERT, Vincent ULg; Lecomte, Julie ULg; Hansen, Sylvain ULg et al

in Nature Protocols (2013), 8(11), 2197-2211

The mouse model of laser-induced choroidal neovascularization (CNV) has been used extensively in studies of the exudative form of age-related macular degeneration (AMD). This experimental in vivo model ... [more ▼]

The mouse model of laser-induced choroidal neovascularization (CNV) has been used extensively in studies of the exudative form of age-related macular degeneration (AMD). This experimental in vivo model relies on laser injury to perforate Bruch's membrane, resulting in subretinal blood vessel recruitment from the choroid. By recapitulating the main features of the exudative form of human AMD, this assay has served as the backbone for testing antiangiogenic therapies. This standardized protocol can be applied to transgenic mice and can include treatments with drugs, recombinant proteins, antibodies, adenoviruses and pre-microRNAs to aid in the search for new molecular regulators and the identification of novel targets for innovative treatments. This robust assay requires 7-14 d to complete, depending on the treatment applied and whether immunostaining is performed. This protocol includes details of how to induce CNV, including laser induction, lesion excision, processing and different approaches to quantify neoformed vasculature. [less ▲]

Detailed reference viewed: 66 (28 ULg)
Full Text
Peer Reviewed
See detailMicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy.
Halkein, Julie ULg; Tabruyn, Sebastien P.; Ricke-Hoch, Melanie et al

in Journal of Clinical Investigation (2013), 123(5), 2143-54

Peripartum cardiomyopathy (PPCM) is a life-threatening pregnancy-associated cardiomyopathy in previously healthy women. Although PPCM is driven in part by the 16-kDa N-terminal prolactin fragment (16K PRL ... [more ▼]

Peripartum cardiomyopathy (PPCM) is a life-threatening pregnancy-associated cardiomyopathy in previously healthy women. Although PPCM is driven in part by the 16-kDa N-terminal prolactin fragment (16K PRL), the underlying molecular mechanisms are poorly understood. We found that 16K PRL induced microRNA-146a (miR-146a) expression in ECs, which attenuated angiogenesis through downregulation of NRAS. 16K PRL stimulated the release of miR-146a-loaded exosomes from ECs. The exosomes were absorbed by cardiomyocytes, increasing miR-146a levels, which resulted in a subsequent decrease in metabolic activity and decreased expression of Erbb4, Notch1, and Irak1. Mice with cardiomyocyte-restricted Stat3 knockout (CKO mice) exhibited a PPCM-like phenotype and displayed increased cardiac miR-146a expression with coincident downregulation of Erbb4, Nras, Notch1, and Irak1. Blocking miR-146a with locked nucleic acids or antago-miRs attenuated PPCM in CKO mice without interrupting full-length prolactin signaling, as indicated by normal nursing activities. Finally, miR-146a was elevated in the plasma and hearts of PPCM patients, but not in patients with dilated cardiomyopathy. These results demonstrate that miR-146a is a downstream-mediator of 16K PRL that could potentially serve as a biomarker and therapeutic target for PPCM. [less ▲]

Detailed reference viewed: 77 (27 ULg)
Full Text
Peer Reviewed
See detailMiR-205 is downregulated in hereditary hemorrhagic telangiectasia and impairs TGF-beta signaling pathways in endothelial cells.
Tabruyn, Sebastien P.; Hansen, Sylvain ULg; Ojeda-Fernandez, Maria-Luisa et al

in Angiogenesis (2013)

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by arteriovenous malformations and hemorrhages. This vascular disease results mainly from mutations in 2 genes ... [more ▼]

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by arteriovenous malformations and hemorrhages. This vascular disease results mainly from mutations in 2 genes involved in the TGF-beta pathway (ENG and ALK1) that are exclusively expressed by endothelial cells. The present study identified miR-27a and miR-205 as two circulating miRNAs differentially expressed in HHT patients. The plasma levels of miR-27a are elevated while those of miR-205 are reduced in both HHT1 and HHT2 patients compared to healthy controls. The role of miR-205 in endothelial cells was further investigated. Our data indicates that miR-205 expression displaces the TGF-beta balance towards the anti-angiogenic side by targeting Smad1 and Smad4. In line, overexpression of miR-205 in endothelial cells reduces proliferation, migration and tube formation while its inhibition shows opposite effects. This study not only suggests that detection of circulating miRNA (miR-27a and miR-205) could help for the screening of HHT patients but also provides a functional link between the deregulated expression of miR-205 and the HHT phenotype. [less ▲]

Detailed reference viewed: 24 (5 ULg)
Full Text
Peer Reviewed
See detailPhenotyping and outcome on contemporary management in a German cohort of patients with peripartum cardiomyopathy.
Haghikia, A.; Podewski, E.; Libhaber, E. et al

in Basic Research in Cardiology (2013), 108(4), 366

Peripartum cardiomyopathy (PPCM) is a life-threatening heart disease developing towards the end of pregnancy or in the months following delivery in previously healthy women in terms of cardiac disease ... [more ▼]

Peripartum cardiomyopathy (PPCM) is a life-threatening heart disease developing towards the end of pregnancy or in the months following delivery in previously healthy women in terms of cardiac disease. Enhanced oxidative stress and the subsequent cleavage of the nursing hormone Prolactin into an anti-angiogenic 16 kDa subfragment emerged as a potential causal factor of the disease. We established a prospective registry with confirmed PPCM present in 115 patients (mean baseline left ventricular ejection fraction, LVEF: 27 +/- 9 %). Follow-up data (6 +/- 3 months) showed LVEF improvement in 85 % and full recovery in 47 % while 15 % failed to recover with death in 2 % of patients. A positive family history of cardiomyopathy was present in 16.5 %. Pregnancy-associated hypertension was associated with a better outcome while a baseline LVEF </= 25 % was associated with a worse outcome. A high recovery rate (96 %) was observed in patients obtaining combination therapy with beta-blocker, angiotensin-converting enzyme (ACE) inhibitors/angiotensin-receptor-blockers (ARBs) and bromocriptine. Increased serum levels of Cathepsin D, the enzyme that generates 16 kDa Prolactin, miR-146a, a direct target of 16 kDa Prolactin, N-terminal-pro-brain-natriuretic peptide (NT-proBNP) and asymmetric dimethylarginine (ADMA) emerged as biomarkers for PPCM. In conclusion, low baseline LVEF is a predictor for poor outcome while pregnancy-induced hypertensive disorders are associated with a better outcome in this European PPCM cohort. The high recovery rate in this collective is associated with a treatment concept using beta-blockers, ACE inhibitors/ARBs and bromocriptine. Increased levels of Cathepsin D activity, miR-146a and ADMA in serum of PPCM patients support the pathophysiological role of 16 kDa Prolactin for PPCM and may be used as a specific diagnostic marker profile. [less ▲]

Detailed reference viewed: 7 (1 ULg)
Full Text
Peer Reviewed
See detailMatrix metalloproteinase-2 governs lymphatic vessel formation as an interstitial collagenase.
Detry, Benoît ULg; Erpicum, Charlotte ULg; Paupert, Jenny ULg et al

in Blood (2012), 119(21), 5048-56

Lymphatic dysfunctions are associated with several human diseases, including lymphedema and metastatic spread of cancer. Although it is well recognized that lymphatic capillaries attach directly to ... [more ▼]

Lymphatic dysfunctions are associated with several human diseases, including lymphedema and metastatic spread of cancer. Although it is well recognized that lymphatic capillaries attach directly to interstitial matrix mainly composed of fibrillar type I collagen, the interactions occurring between lymphatics and their surrounding matrix have been overlooked. In this study, we demonstrate how matrix metalloproteinase (MMP)–2 drives lymphatic morphogenesis through Mmp2-gene ablation in mice, mmp2 knockdown in zebrafish and in 3D-culture systems, and through MMP2 inhibition. In all models used in vivo (3 murine models and thoracic duct development in zebrafish) and in vitro (lymphatic ring and spheroid assays), MMP2 blockage or down-regulation leads to reduced lymphangiogenesis or altered vessel branching. Our data show that lymphatic endothelial cell (LEC) migration through collagen fibers is affected by physical matrix constraints (matrix composition, density and cross-linking). Transmission electron microscopy (TEM) and confocal reflection microscopy using DQ-collagen highlight the contribution of MMP2 to mesenchymal-like migration of LEC associated with collagen fiber remodeling. Our findings provide new mechanistic insight into how LEC negotiate an interstitial type I collagen barrier and reveal an unexpected MMP2-driven collagenolytic pathway for lymphatic vessel formation and morphogenesis. [less ▲]

Detailed reference viewed: 157 (64 ULg)
Peer Reviewed
See detailMicroRNA-146a is a causative factor and a specific biomarker for peripartum cardiomyopathy
Halkein, Julie ULg; Tabruyn, Sébastien ULg; Haghikia, Arash et al

Poster (2012, April)

Detailed reference viewed: 48 (3 ULg)