References of "Stanichny, Sergey"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailWind driven upwelling along the African coast of the Strait of Gibraltar
Stanichny, Sergey ULg; Tigny, V.; Stanichnaya, R. et al

in Geophysical Research Letters (2005), 32(L04604),

Regular remote sensing data from various sensors are used here for the study of the wind driven upwelling phenomenon along the African coast of the Strait of Gibraltar. It is shown for an extended summer ... [more ▼]

Regular remote sensing data from various sensors are used here for the study of the wind driven upwelling phenomenon along the African coast of the Strait of Gibraltar. It is shown for an extended summer period (May 15 till September 15, 2003) that sea surface temperature (SST) data in the strait are correlated with NCEP winds, each westward wind increase being followed by a clear surface temperature decrease. Local surface temperature of about 22degreesC at that time drops down to 15degreesC, value corresponding to the 80 - 120 m depth conditions. The analysis of subsequent images indicates that the cold upwelling plume typically moves first to the Atlantic during wind forcing, and then to the Mediterranean after the wind event. The presence of the northern coast of the strait is taken as responsible for a rise of a cross-strait sea level gradient and the enhancement of the associated westward geostrophic current that explains the first stage of the plume deployment. Sea level difference measured between Tarifa (European coast) and Ceuta (African coast), well described by a linear equation in term of the westward wind component, supports this idea as well as the subsequent remotely sensed SST distributions. [less ▲]

Detailed reference viewed: 19 (5 ULg)
See detailRecent state of the Aral sea from regular satellite observations. 35th COSPAR Scientific Assembly
Stanichny, Sergey ULg; Davidov, A.; Djenidi, Salim ULg et al

in 35th COSPAR Scientific Assembly (2004)

The Aral Sea disaster is one of the most significant examples of ecological catastrophe caused by mismanagement of water resources. Aral sea level dropped on 22 meters for the last 35 years. The sea ... [more ▼]

The Aral Sea disaster is one of the most significant examples of ecological catastrophe caused by mismanagement of water resources. Aral sea level dropped on 22 meters for the last 35 years. The sea separated in to two independent parts , the Large Sea(Southern) and the Small Sea (Northern), loosing more than 90% of its original water masses. After the collapse of the former Soviet Union, satellite retrieved data became the main source of information on this perishing system. Regular observations from AVHRR, SeaWiFS, MODIS and ASTER satellite sensors were used for our investigations. Sea surface temperature (SST) data of the AVHRR sensor and digital bottom map topography were used for sea level drop calculations. The Sea level defined as the digital map isobate corresponds quite well to the satellite derived coastline for the Eastern part of the Large Sea with a bottom slope of ˜ 0.00015. For the period 1989-2002 the sea level of the Large Sea dropped on 9.2 meters. However in 2003 the sea level remained stable. This stabilisation was due to an increase of water output of the rivers Amu--Darya and Syr-Darya in 2003. High resolution ASTER data showed that the main amount of Syr-Darya waters is discharged into the Large Sea. The dried bottom area now covers more than 45000 km2. On the base of AVHRR-SST data the temperature regime for different parts of the Aral Sea was calculated for the years 2002-2003. The annual amplitude of the SST variation reaches 37° C for the open waters. The observed minimum freezing point was -7° C due to very high salinity. Estimations from satellite retrieved freezing points show an increase of salinity up to 10% in the Eastern part of the Large Sea. It is almost paradox that on satellite images the ice appears warmer than the water. Strong variations of the water temperature (up to 5° C) within a few days could be observed from April to August and could be related to wind induced mixing. SeaWiFS ocean colour data were used for the investigation of the optical properties of the water in different parts of the Aral Sea for the years 2002-2003. A significant relation of optical properties with wind and temperature was obtained. Strong changes of the thermal regimes of the Sea can cause variations in local climatic conditions: The analysis of AVHRR NDVI - data for the surrounding areas demonstrated a shift in the annual vegetation cycle. In addition phenomena like: salt storms, wind driven tides, sources of groundwater, eddies and frontal structures as well as ice coverage of the Aral Sea were demonstrated on satellite images. [less ▲]

Detailed reference viewed: 7 (0 ULg)