References of "Servais, Christian"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOptimized approach to retrieve information on atmospheric carbonyl sulfide (OCS) above the Jungfraujoch station and change in its abundance since 1995
Lejeune, Bernard ULg; Mahieu, Emmanuel ULg; Vollmer, M. K. et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (in press)

In this paper, we present an optimized retrieval strategy for carbonyl sulfide (OCS), using Fourier transform infrared (FTIR) solar observations made at the high-altitude Jungfraujoch station in the Swiss ... [more ▼]

In this paper, we present an optimized retrieval strategy for carbonyl sulfide (OCS), using Fourier transform infrared (FTIR) solar observations made at the high-altitude Jungfraujoch station in the Swiss Alps. More than 200 lines of the nu3 fundamental band of OCS have been systematically evaluated and we selected 4 microwindows on the basis of objective criteria minimizing the effect of interferences, mainly by solar features, carbon dioxide and water vapor absorption lines, while maximizing the information content. Implementation of this new retrieval strategy provided an extended time series of the OCS abundance spanning the 1995-2015 time period, for the study of the long-term trend and seasonal variation of OCS in the free troposphere and stratosphere. Three distinct periods characterize the evolution of the tropospheric partial columns: a first decreasing period (1995-2002), an intermediate increasing period (2002-2008), and the more recent period (2008-2015) which shows no significant trend. Our FTIR tropospheric and stratospheric time series are compared with new in situ gas chromatography mass spectrometry (GCMS) measurements performed by Empa (Laboratory for Air Pollution/Environmental Technology) at the Jungfraujoch since 2008, and with space-borne solar occultation observations by the ACE-FTS instrument on-board the SCISAT satellite, respectively, and they show good agreement. The OCS signal recorded above Jungfraujoch appears to be closely related to anthropogenic sulfur emissions. [less ▲]

Detailed reference viewed: 53 (15 ULg)
Full Text
Peer Reviewed
See detailTen years of atmospheric methane from ground-based NDACC FTIR observations
Bader, Whitney ULg; Bovy, Benoît ULg; Conway, S. et al

in Atmospheric Chemistry & Physics Discussions (2016), 2016

Changes of atmospheric methane (CH4) since 2005 have been evaluated using Fourier Transform Infrared (FTIR) solar observations performed at ten ground-based sites, all members of the Network for Detection ... [more ▼]

Changes of atmospheric methane (CH4) since 2005 have been evaluated using Fourier Transform Infrared (FTIR) solar observations performed at ten ground-based sites, all members of the Network for Detection of Atmospheric Composition Change (NDACC). From this, we find an increase of atmospheric methane total columns that amounts to 0.31 ± 0.03 % year-1 (2-sigma level of uncertainty) for the 2005–2014 period. Comparisons with in situ methane measurements at both local and global scales show good agreement. We used the GEOS-Chem Chemical Transport Model tagged simulation that accounts for the contribution of each emission source and one sink in the total methane, simulated over the 2005–2012 time period and based on emissions inventories and transport. After regridding according to NDACC vertical layering using a conservative regridding scheme and smoothing by convolving with respective FTIR seasonal averaging kernels, the GEOS-Chem simulation shows an increase of atmospheric methane of 0.35 ± 0.03 % year-1 between 2005 and 2012, which is in agreement with NDACC measurements over the same time period (0.30 ± 0.04 % year-1, averaged over ten stations). Analysis of the GEOS-Chem tagged simulation allows us to quantify the contribution of each tracer to the global methane change since 2005. We find that natural sources such as wetlands and biomass burning contribute to the inter-annual variability of methane. However, anthropogenic emissions such as coal mining, and gas and oil transport and exploration, which are mainly emitted in the Northern Hemisphere and act as secondary contributors to the global budget of methane, have played a major role in the increase of atmospheric methane observed since 2005. Based on the GEOS-Chem tagged simulation, we discuss possible cause(s) for the increase of methane since 2005, which is still unexplained. [less ▲]

Detailed reference viewed: 32 (2 ULg)
Full Text
Peer Reviewed
See detailTropospheric water vapour isotopologue data (H216O, H218O and HD16O) as obtained from NDACC/FTIR solar absorption spectra
Barthlott, Sabine; Schneider, Matthias; Hase, Frank et al

in Earth System Science Data Discussions (2016)

We report on the ground-based FTIR (Fourier Transform InfraRed) tropospheric water vapour isotopologue remote sensing data that have been recently made available via the database of NDACC (Network for the ... [more ▼]

We report on the ground-based FTIR (Fourier Transform InfraRed) tropospheric water vapour isotopologue remote sensing data that have been recently made available via the database of NDACC (Network for the Detection of Atmospheric Composition Change; ftp://ftp.cpc.ncep.noaa.gov/ndacc/MUSICA/) and via doi:10.5281/zenodo.48902. Currently, data are available for 12 globally distributed stations. They have been centrally retrieved and quality filtered in the framework of the MUSICA project (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water). We explain particularities of retrieving the water vapour isotopologue state (vertical distribution of H162O, H182O and HD16O) and reveal the need for a new meta-data template for archiving such FTIR isotopologue data. We describe the format of different data components and give recommendations for correct data usage. Data are provided as two data types. The first type is best-suited for tropospheric water vapour distribution studies disregarding different isotopologues (comparison with radiosonde data, analyses of water vapour variability and trends, etc.). The second type is needed for analysing moisture pathways by means of {H2O,delta-D}-pair distributions. [less ▲]

Detailed reference viewed: 46 (4 ULg)
Full Text
Peer Reviewed
See detailDiurnal cycle and multi-decadal trend of formaldehyde in the remote atmosphere near 46° N
Franco, Bruno ULg; Marais, Eloise A.; Bovy, Benoît ULg et al

in Atmospheric Chemistry and Physics (2016), 16

Only very few long-term records of formaldehyde (HCHO) exist that are suitable for trend analysis. Furthermore, many uncertainties remain as to its diurnal cycle, representing a large short-term ... [more ▼]

Only very few long-term records of formaldehyde (HCHO) exist that are suitable for trend analysis. Furthermore, many uncertainties remain as to its diurnal cycle, representing a large short-term variability superimposed on seasonal and inter-annual variations that should be accounted for when comparing ground-based observations to e.g., model results. In this study, we derive a multi-decadal time series (January 1988 – June 2015) of HCHO total columns from ground-based high-resolution Fourier transform infrared (FTIR) solar spectra recorded at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.), allowing for the characterization of the mid-latitudinal atmosphere for background conditions. First we investigate the HCHO diurnal variation, peaking around noontime and mainly driven by the intra-day insolation modulation and methane (CH4) oxidation. We also characterize quantitatively the diurnal cycles by adjusting a parametric model to the observations, which links the daytime to the HCHO columns according to the monthly intra-day regimes. It is then employed to scale all the individual FTIR measurements on a given daytime in order to remove the effect of the intra-day modulation for improving the trend determination and the comparison with HCHO columns simulated by the state-of-the-art chemical transport model GEOS-Chem v9-02. Such a parametric model will be useful to scale the Jungfraujoch HCHO columns on satellite overpass times in the framework of future calibration/validation efforts of space borne sensors. GEOS-Chem sensitivity tests suggest then that the seasonal and inter-annual HCHO column variations above Jungfraujoch are predominantly led by the atmospheric CH4 oxidation, with a maximum contribution of 25 % from the anthropogenic non-methane volatile organic compound precursors during wintertime. Finally, trend analysis of the so-scaled 27-year FTIR time series reveals a long-term evolution of the HCHO columns in the remote troposphere to be related with the atmospheric CH4 fluctuations and the short-term OH variability: +2.9 %/yr between 1988 and 1995, -3.7 %/yr over 1996-2002 and +0.8/% yr from 2003 onwards. [less ▲]

Detailed reference viewed: 65 (25 ULg)
Full Text
Peer Reviewed
See detailRetrieval of HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra: Atmospheric increase since 1989 and comparison with surface and satellite measurements
Mahieu, Emmanuel ULg; Lejeune, Bernard ULg; Bovy, Benoît ULg et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2016)

We have developed an approach for retrieving HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra, using its ν7 band Q branch in the 900–906 cm-1 interval. Interferences by HNO3 ... [more ▼]

We have developed an approach for retrieving HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra, using its ν7 band Q branch in the 900–906 cm-1 interval. Interferences by HNO3, CO2 and H2O have to be accounted for. Application of this approach to observations recorded within the framework of long-term monitoring activities carried out at the northern mid-latitude, high-altitude Jungfraujoch station in Switzerland (46.5°N, 8.0°E, 3580 m above sea level) has provided a total column times series spanning the 1989 to mid-2015 time period. A fit to the HCFC-142b daily mean total column time series shows a statistically-significant long-term trend of (1.23±0.08×1013 molec cm-2) per year from 2000 to 2010, at the 2-σ confidence level. This corresponds to a significant atmospheric accumulation of (0.94±0.06) ppt (1 ppt=10-12) per year for the mean tropospheric mixing ratio, at the 2−σ confidence level. Over the subsequent time period (2010–2014), we note a significant slowing down in the HCFC-142b buildup. Our ground-based FTIR (Fourier Transform Infrared) results are compared with relevant data sets derived from surface in situ measurements at the Mace Head and Jungfraujoch sites of the AGAGE (Advanced Global Atmospheric Gases Experiment) network and from occultation measurements by the ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) instrument on-board the SCISAT satellite. [less ▲]

Detailed reference viewed: 28 (8 ULg)
Full Text
Peer Reviewed
See detailAcetylene (C2H2) and hydrogen cyanide (HCN) from IASI satellite observations: global distributions, validation, and comparison with model
Duflot, V.; Wespes, C.; Clarisse, L. et al

in Atmospheric Chemistry and Physics (2015), 15

We present global distributions of C2H2 and hydrogen cyanide (HCN) total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI) for the years 2008–2010. These distributions are ... [more ▼]

We present global distributions of C2H2 and hydrogen cyanide (HCN) total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI) for the years 2008–2010. These distributions are obtained with a fast method allowing to retrieve C2H2 abundance globally with a 5% precision and HCN abundance in the tropical (subtropical) belt with a 10% (25 %) precision. IASI data are compared for validation purposes with ground-based Fourier transform infrared (FTIR) spectrometer measurements at four selected stations. We show that there is an overall agreement between the ground-based and space measurements with correlation coefficients for daily mean measurements ranging from 0.28 to 0.81, depending on the site. Global C2H2 and subtropical HCN abundances retrieved from IASI spectra show the expected seasonality linked to variations in the anthropogenic emissions and seasonal biomass burning activity, as well as exceptional events, and are in good agreement with previous spaceborne studies. Total columns simulated by the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) are compared to the ground-based FTIR measurements at the four selected stations. The model is able to capture the seasonality in the two species in most of the cases, with correlation coefficients for daily mean measurements ranging from 0.50 to 0.86, depending on the site. IASI measurements are also compared to the distributions from MOZART-4. Seasonal cycles observed from satellite data are reasonably well reproduced by the model with correlation coefficients ranging from -0.31 to 0.93 for C2H2 daily means, and from 0.09 to 0.86 for HCN daily means, depending on the considered region. However, the anthropogenic (biomass burning) emissions used in the model seem to be overestimated (underestimated), and a negative global mean bias of 1% (16 %) of the model relative to the satellite observations was found for C2H2 (HCN). [less ▲]

Detailed reference viewed: 53 (12 ULg)
Full Text
Peer Reviewed
See detailRetrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations
Franco, Bruno ULg; Hendrick, François; Van Roozendael, Michel et al

in Atmospheric Measurement Techniques (2015), 8

As an ubiquitous product of the oxidation of many volatile organic compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation ... [more ▼]

As an ubiquitous product of the oxidation of many volatile organic compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation pathways leading to the formation of tropospheric ozone and secondary organic aerosols. In this study, HCHO profiles have been successfully retrieved from ground-based Fourier transform infrared (FTIR) solar spectra and UV-visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) scans recorded during the July 2010–December 2012 time period at the Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580m a.s.l.). Analysis of the retrieved products has revealed different vertical sensitivity between both remote sensing techniques. Furthermore, HCHO amounts simulated by two state-of-the-art chemical transport models (CTMs), GEOSChem and IMAGES v2, have been compared to FTIR total columns and MAX-DOAS 3.6–8 km partial columns, accounting for the respective vertical resolution of each ground-based instrument. Using the CTM outputs as the intermediate, FTIR and MAX-DOAS retrievals have shown consistent seasonal modulations of HCHO throughout the investigated period, characterized by summertime maximum and wintertime minimum. Such comparisons have also highlighted that FTIR and MAX-DOAS provide complementary products for the HCHO retrieval above the Jungfraujoch station. Finally, tests have revealed that the updated IR parameters from the HITRAN 2012 database have a cumulative effect and significantly decrease the retrieved HCHO columns with respect to the use of the HITRAN 2008 compilation. [less ▲]

Detailed reference viewed: 116 (44 ULg)
Full Text
See detailHalogenated source gases measured by FTIR at the Jungfraujoch station: updated trends and new target species
Mahieu, Emmanuel ULg; Bader, Whitney ULg; Bovy, Benoît ULg et al

in Geophysical Research Abstracts (2015, April 13), 17

In this contribution, we present decadal time series of halogenated source gases monitored at the high altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl) with Fourier Transform Infared (FTIR ... [more ▼]

In this contribution, we present decadal time series of halogenated source gases monitored at the high altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl) with Fourier Transform Infared (FTIR) spectrometers, within the framework of the Network for the Detection of Atmospheric Composition Change. Total column trends presented in previous studies for CFC-11, -12 and HCFC-22, CCl4, HCFC-142b, CF4 and SF6 will be updated using the latest available Jungfraujoch solar observations. Investigations dealing with the definition of approaches to retrieve additional halogenated source gases from FTIR spectra will also be evoked. Our trend results will be critically discussed and compared with measurements performed in the northern hemisphere by the in situ networks. [less ▲]

Detailed reference viewed: 57 (12 ULg)
Full Text
Peer Reviewed
See detailRetrieval of ethane from ground-based FTIR solar spectra using improved spectroscopy: recent burden increase above Jungfraujoch
Franco, Bruno ULg; Bader, Whitney ULg; Toon, G. C. et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2015), 160(C), 36-49

An improved spectroscopy is used to implement and optimize the retrieval strategy of ethane (C2H6) from ground-based Fourier Transform Infrared (FTIR) solar spectra recorded at the high-altitude station ... [more ▼]

An improved spectroscopy is used to implement and optimize the retrieval strategy of ethane (C2H6) from ground-based Fourier Transform Infrared (FTIR) solar spectra recorded at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 8.0° E, 3580m a.s.l.). The improved spectroscopic parameters include C2H6 pseudo-lines in the 2720-3100 cm-1 range and updated line parameters for methyl chloride and ozone. These improved spectroscopic parameters allow for substantial reduction of the fitting residuals as well as enhanced information content. They also contribute to limiting oscillations responsible for ungeophysical negative mixing ratio profiles. This strategy has been successfully applied to the Jungfraujoch solar spectra available from 1994 onwards. The resulting time series is compared with C2H6 total columns simulated by the state-of-the-art chemical transport model GEOS-Chem. Despite very consistent seasonal cycles between both data sets, a negative systematic bias relative to the FTIR observations suggests that C2H6 emissions are underestimated in the current inventories implemented in GEOS-Chem. Finally, C2H6 trends are derived from the FTIR time series, revealing a statistically-significant sharp increase of the C2H6 burden in the remote atmosphere above Jungfraujoch since 2009. Evaluating cause of this change in the C2H6 burden, which may be related to the recent massive growth of shale gas exploitation in North America, is of primary importance for atmospheric composition and air quality in the Northern Hemisphere. [less ▲]

Detailed reference viewed: 202 (66 ULg)
Full Text
Peer Reviewed
See detailTrends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe
Vigouroux, C; Blumenstock, T; Coffey, M et al

in Atmospheric Chemistry and Physics (2015), 15

Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2 % but also independent partial column amounts in about four ... [more ▼]

Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2 % but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45 km, with a precision of 5–6 %. We use eight of the Network for the Detection of Atmospheric Composition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely, Ny-Ålesund (79ºN), Thule (77ºN), Kiruna (68ºN), Harestua (60ºN), Jungfraujoch (47ºN), Izaña (28ºN), Wollongong (34ºS) and Lauder (45ºS). The length of the FTIR time series varies by station but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, quasi-biennial oscillation (QBO), El Niño–Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen–Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995–2003 period, and non-significant when considering the total columns. The trends for mid-latitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere and at Wollongong for the total columns and the lower and middle stratospheric columns where they are found positive. At Jungfraujoch, the upper stratospheric trend is close to significance (+0.9 ± 1.0 %/decade). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seem to be needed to observe it at the northern mid-latitude station. [less ▲]

Detailed reference viewed: 38 (7 ULg)
Full Text
Peer Reviewed
See detailLong-term evolution and seasonal modulation of methanol above Jungfraujoch (46.5°N, 8.0°E): Optimisation of the retrieval strategy, comparison with model and independant observations
Bader, Whitney ULg; Stavrakou, T; Muller, J-F et al

in Atmospheric Measurement Techniques (2014), 7

Methanol (CH3OH) is the second most abundant organic compound in the Earth's atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and ... [more ▼]

Methanol (CH3OH) is the second most abundant organic compound in the Earth's atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and upper tropospheric-lower stratospheric partial columns derived from the analysis of high resolution Fourier transform infrared solar spectra recorded at the Jungfraujoch station (46.5° N, 3580 m a.s.l.). The retrieval of methanol is very challenging due to strong absorptions of ozone in the region of the selected υ8 band of CH3OH. Two wide spectral intervals have been defined and adjusted in order to maximize the information content. Methanol does not exhibit a significant trend over the 1995–2012 time period, but a strong seasonal modulation characterized by maximum values and variability in June–July, minimum columns in winter and a peak-to-peak amplitude of 130%. In situ measurements performed at the Jungfraujoch and ACE-FTS occultations give similar results for the methanol seasonal variation. The total and lower tropospheric columns are also compared with IMAGESv2 model simulations. There is no systematic bias between the observations and IMAGESv2 but the model underestimates the peak-to-peak amplitude of the seasonal modulations. [less ▲]

Detailed reference viewed: 102 (33 ULg)
Full Text
Peer Reviewed
See detailRetrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations
Franco, Bruno ULg; Hendrick, François; Van Roozendael, Michel et al

Conference (2014, November 07)

As a ubiquitous product of the oxidation of many Volatile Organic Compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation ... [more ▼]

As a ubiquitous product of the oxidation of many Volatile Organic Compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation pathways leading to the formation of tropospheric ozone and secondary organic aerosols. We have successfully retrieved HCHO columns from ground-based Fourier Transform Infrared (FTIR) solar spectra and UV-Visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) scans recorded during the July 2010 – December 2012 time period at the Jungfraujoch station (Swiss Alps, 46.5 °N, 8.0 °E, 3580 m a.s.l.). Characterization of the retrieved products has revealed different vertical sensitivity between both remote sensing techniques. Furthermore, HCHO amounts simulated by two state-of-the-art Chemical Transport Models (CTMs), GEOS-Chem and IMAGESv2, have been compared to FTIR total columns and MAX-DOAS 3.6 – 8 km partial columns, accounting for the respective vertical resolution of each ground-based instrument. Using the CTMs outputs as intermediate, FTIR and MAX-DOAS retrievals have shown consistent seasonal modulations of HCHO throughout the investigated period, characterized by summertime maximum and wintertime minimum. Such comparisons have also highlighted that FTIR and MAX-DOAS provide complementary products for HCHO above the Jungfraujoch station. [less ▲]

Detailed reference viewed: 27 (7 ULg)
Full Text
Peer Reviewed
See detailRecent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes
Mahieu, Emmanuel ULg; Chipperfield, M. P.; Notholt, J. et al

in Nature (2014), 515(7525), 104--107

The abundance of chlorine in the Earth’s atmosphere increased considerably during the 1970s to 1990s, following large emissions of anthropogenic long-lived chlorine-containing source gases, notably the ... [more ▼]

The abundance of chlorine in the Earth’s atmosphere increased considerably during the 1970s to 1990s, following large emissions of anthropogenic long-lived chlorine-containing source gases, notably the chlorofluorocarbons. The chemical inertness of chlorofluorocarbons allows their transport and mixing throughout the troposphere on a global scale[1], before they reach the stratosphere where they release chlorine atoms that cause ozone depletion[2]. The large ozone loss over Antarctica[3] was the key observation that stimulated the definition and signing in 1987 of the Montreal Protocol, an international treaty establishing a schedule to reduce the production of the major chlorine- and bromine-containing halocarbons. Owing to its implementation, the near-surface total chlorine concentration showed a maximum in 1993, followed by a decrease of half a per cent to one per cent per year[4], in line with expectations. Remote-sensing data have revealed a peak in stratospheric chlorine after 1996[5], then a decrease of close to one per cent per year[6,7], in agreement with the surface observations of the chlorine source gases and model calculations[7]. Here we present ground-based and satellite data that show a recent and significant increase, at the 2σ level, in hydrogen chloride (HCl), the main stratospheric chlorine reservoir, starting around 2007 in the lower stratosphere of the Northern Hemisphere, in contrast with the ongoing monotonic decrease of near-surface source gases. Using model simulations, we attribute this trend anomaly to a slowdown in the Northern Hemisphere atmospheric circulation, occurring over several consecutive years, transporting more aged air to the lower stratosphere, and characterized by a larger relative conversion of source gases to HCl. This short-term dynamical variability will also affect other stratospheric tracers and needs to be accounted for when studying the evolution of the stratospheric ozone layer. [less ▲]

Detailed reference viewed: 64 (28 ULg)
See detailIncrease in northern hemisphere stratospheric hydrogen chloride over recent years
Mahieu, Emmanuel ULg; Chipperfield, MP; Notholt, J et al

Poster (2014, October 07)

Detailed reference viewed: 20 (4 ULg)
Full Text
See detailLong-term evolution and seasonal modulation of methanol above Jungfraujoch (46.5°N, 8.0°E): Optimisation of the retrieval strategy, comparison with model and independent observations
Bader, Whitney ULg; Stavrakou, J; Muller, J-F et al

Poster (2014, May)

Methanol (CH3OH) is the second most abundant organic compound in the Earth’s atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and ... [more ▼]

Methanol (CH3OH) is the second most abundant organic compound in the Earth’s atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and upper tropospheric-lower stratospheric partial columns derived from the analysis of high resolution Fourier transform infrared solar spectra recorded at the Jungfraujoch station (46.5°N, 3580 m a.s.l.). The retrieval of methanol is very challenging due to strong absorptions of ozone in the region of the selected 8 band of CH3OH. Two wide spectral intervals have been defined and adjusted in order to maximize the information content. Methanol does not exhibit a significant trend over the 1995-2012 time period, but a strong seasonal modulation characterized by maximum values and variability in June-July, minimum columns in winter and a peak-to-peak amplitude of 130 %. In situ measurements performed at the Jungfraujoch and ACE-FTS occultations give similar results for the methanol seasonal variation. The total and lower tropospheric columns are also compared with IMAGESv2 model simulations. There is no systematic bias between the observations and IMAGESv2 but the model underestimates the peak-to-peak amplitude of the seasonal modulations. [less ▲]

Detailed reference viewed: 54 (11 ULg)
Full Text
Peer Reviewed
See detailSpectrometric monitoring of atmospheric carbon tetrafluoride (CF4) above the Jungfraujoch station since 1989: evidence of continued increase but at a slowing rate
Mahieu, Emmanuel ULg; Zander, Rodolphe ULg; Toon, G. C. et al

in Atmospheric Measurement Techniques (2014), 7

The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.) has been derived from the ... [more ▼]

The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.) has been derived from the spectrometric analysis of Fourier transform infrared solar spectra recorded at that site between 1989 and 2012. The investigation is based on a multi-microwindow approach, two encompassing pairs of absorption lines belonging to the R-branch of the strong ν3 band of CF4 centered at 1283 cm−1, and two additional ones to optimally account for weak but overlapping HNO3 interferences. The analysis reveals a steady accumulation of the very long-lived CF4 above the Jungfraujoch at mean rates of (1.38 ± 0.11) × 1013 molec cm−2 yr−1 from 1989 to 1997, and (0.98 ± 0.02) × 1013 molec cm−2 yr−1 from 1998 to 2012, which correspond to linear growth rates of 1.71 ± 0.14 and 1.04 ± 0.02% yr−1 respectively referenced to 1989 and 1998. Related global CF4 anthropogenic emissions required to sustain these mean increases correspond to 15.8 ± 1.3 and 11.1 ± 0.2 Gg yr−1 over the above specified time intervals. Findings reported here are compared and discussed with respect to relevant northern mid-latitude results obtained remotely from space and balloons as well as in situ at the ground, including new gas chromatography mass spectrometry measurements performed at the Jungfraujoch since 2010. [less ▲]

Detailed reference viewed: 122 (42 ULg)
Full Text
See detailParallel measurements of formaldehyde (H2CO) at the Jungfraujoch station: preliminary FTIR results and first comparison with Max-DOAS data
Franco, Bruno ULg; Mahieu, Emmanuel ULg; Van Roozendael, Michel et al

Conference (2013, October 17)

In the framework of the NORS project, a retrieval strategy for formaldehyde (H2CO) is currently under development, using measurements from ground-based high-resolution FTIR solar spectra recorded at the ... [more ▼]

In the framework of the NORS project, a retrieval strategy for formaldehyde (H2CO) is currently under development, using measurements from ground-based high-resolution FTIR solar spectra recorded at the NDACC high altitude station of the Jungfraujoch (Swiss Alps, 46.5° N, 8.0° E, 3580m a.s.l.). According to the preliminary results, our FTIR retrieval strategy based on Tikhonov regularization has proven able to make an improvement in the process of fitting the H2CO feature within the 2833.070 – 2833.350 cm-1 microwindow from Jungfraujoch solar spectra, compared to a simple scaling. Furthermore, the retrieved total columns present a seasonal cycle averaged over 2005 – 2013 in agreement with preliminary results from UV-visible MAX-DOAS observations, ACE-FTS occultation measurements and simulations from the IMAGES and GEOS-CHEM models. However, FTIR H2CO abundances appear to be underestimated during summertime, with respect to the other data sets. In order to solve this issue, further experiments are planned. [less ▲]

Detailed reference viewed: 66 (6 ULg)
Full Text
See detailOverview of the geophysical data derived from long-term FTIR monitoring activities at the Jungfraujoch NDACC site (46.5ºN) and the PYGCHEM project
Mahieu, Emmanuel ULg; Bovy, Benoît ULg; Bader, Whitney ULg et al

Poster (2013, May 07)

We present an overview of the geophysical data deduced from long-term monitoring activities conducted at the Jungfraujoch station by the University of Liège. Typical results and trend investigations are ... [more ▼]

We present an overview of the geophysical data deduced from long-term monitoring activities conducted at the Jungfraujoch station by the University of Liège. Typical results and trend investigations are presented for hydrogen chloride (HCl) and carbonyl sulfide (OCS). We further display and briefly describe time series for new target gases, namely methanol (CH3OH) and HCFC-142b. We also show some preliminary results for ammonia (NH3) and peroxyacetyl nitrate (PAN). Finally, we present the PyGChem project, a Python interface to the GEOS-Chem model currently under development at ULg. [less ▲]

Detailed reference viewed: 128 (36 ULg)
Full Text
Peer Reviewed
See detailMeasurements of hydrogen cyanide (HCN) and acetylene (C2H2) from the Infrared Atmospheric Sounding Interferometer (IASI)
Duflot, V.; Hurtmans, D.; Clarisse, L. et al

in Atmospheric Measurement Techniques (2013), 6

Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric ... [more ▼]

Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing, we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S, 55° E) and Jungfraujoch (46° N, 8° E) in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI). A first order comparison with local ground-based Fourier transform InfraRed (FTIR) measurements has been carried out allowing tests of seasonal consistency which is reasonably captured, except for HCN at Jungfraujoch. The IASI data shows a greater tendency to high C2H2 values. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values. [less ▲]

Detailed reference viewed: 131 (5 ULg)