References of "Prasad, Chandra Shekhar"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAdvanced Aeroservoelastic Modeling for Horizontal axis Wind Turbines
Prasad, Chandra Shekhar ULg; Chen, Qiong-zhong; Dimitriadis, Grigorios ULg et al

in Cunha, A.; Caetano, E.; Riberio, P. (Eds.) et al Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014 (2014, July)

This paper describes the development of a complete methodology for the unsteady aeroelastic and aeroservoelastic modeling of horizontal axis wind turbines at the design stage. The methodology is based on ... [more ▼]

This paper describes the development of a complete methodology for the unsteady aeroelastic and aeroservoelastic modeling of horizontal axis wind turbines at the design stage. The methodology is based on the implementation of unsteady aerodynamic modeling, advanced control strategies and nonlinear finite element calculations in the S4WT wind turbine design package. The aerodynamic modeling is carried out by means of the unsteady Vortex Lattice Method, including a free wake model. The complete model also includes a description of a doubly fed induction generator and its control system for variable speed operation and enhanced power output. The S4WT software features a non-linear finite element solver with multi-body dynamics capability. The complete methodology is used to perform complete aeroservoelastic simulations of a 2MW wind turbine prototype model. The interaction between the three components of the approach is carefully analyzed and presented here. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
See detailAerodynamic modeling of horizontal axis wind turbines
Prasad, Chandra Shekhar ULg; Dimitriadis, Grigorios ULg

(2011, July 14)

The paper presents the development of a vortex lattice aerodynamic modeling routine for SAMCEF for Wind Turbine (S4WT). S4WT is a general-purpose commercial code for wind turbine design and analysis. At ... [more ▼]

The paper presents the development of a vortex lattice aerodynamic modeling routine for SAMCEF for Wind Turbine (S4WT). S4WT is a general-purpose commercial code for wind turbine design and analysis. At present, it uses blade element momentum theory (BEM) for the estimation of the aerodynamics loads on HAWT rotor blades. BEM is a simple aerodynamic modeling approach that is currently used by several software packages for wind turbine design (as well as other rotor-based applications). It is based on the assumption that the flow can be treated as quasi-steady and quasi-2D, so that the steady, 2D aerodynamic loads acting on a strip of a rotor blade are used to estimate the instantaneous unsteady, 3D loads acting on a complete blade. This approach ignores the effect of the unsteady wake of the blades on the aerodynamic loads and simplifies the true 3D load distribution over the blades. A higher fidelity calculation of the time varying aerodynamic forces and moments acting on the blades is the main focus of this work. A good compromise between speed and accuracy to calculate these forces is the 3D unsteady vortex lattice method with a freely deforming wake. The vortex lattice results are compared to the BEM results from S4WT. The ultimate aim is to integrate the vortex lattice calculation as a subroutine in S4WT in order to calculate the unsteady aerodynamic forces on the rotor blades during the design process. This new method in S4WT will provide more representative results to the user, which can be very important for designing a more efficient wind turbine. [less ▲]

Detailed reference viewed: 159 (6 ULg)
Full Text
See detailDouble wake vortex lattice modeling of horizontal axis wind turbines
Prasad, Chandra Shekhar ULg; Dimitriadis, Grigorios ULg

in Proceedings of the 15th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2011 (2011, June 29)

This paper presents the development of a vortex lattice based aerodynamic calculation for wind turbine blades. Emphasis is placed on the modeling of flow separation using the vortex lattice approach. This ... [more ▼]

This paper presents the development of a vortex lattice based aerodynamic calculation for wind turbine blades. Emphasis is placed on the modeling of flow separation using the vortex lattice approach. This modeling is carried out by shedding a second free wake at the leading edge, which travels downstream at the local air velocity. The decision on whether to shed a wake or not is taken by looking at the sectional lift characteristics of the blade’s airfoil. If the local angle of attack exceeds the maximum lift angle, then a leading edge wake element is shed. Results from the method are presented for both attached and separated flow and compared with predictions obtained from the Blade Element Momentum theory. It is shown that the shedding of the leading edge wake can increased significantly the agreement between vortex lattice and Blade Element results in cases where there are significant regions of separated flow. This improvement concerns mostly forces acting normal to the rotor plane; tangential forces depend more strongly on the drag and neither method calculates a full representation of the drag. [less ▲]

Detailed reference viewed: 42 (5 ULg)