References of "Pironet, Antoine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailModel-based computation of total stressed blood volume from a preload reduction manoeuvre
Pironet, Antoine ULg; Desaive, Thomas ULg; Chase, J. Geoffrey et al

in Mathematical Biosciences (2015), 265(0), 28-39

Total stressed blood volume is an important parameter for both doctors and engineers. From a medical point of view, it has been associated with the success or failure of fluid therapy, a primary treatment ... [more ▼]

Total stressed blood volume is an important parameter for both doctors and engineers. From a medical point of view, it has been associated with the success or failure of fluid therapy, a primary treatment to manage acute circulatory failure. From an engineering point of view, it dictates the cardiovascular system’s behavior in changing physiological situations. Current methods to determine this parameter involve repeated phases of circulatory arrests followed by fluid administration. In this work, a more straightforward method is developed using data from a preload reduction manoeuvre. A simple six-chamber cardiovascular system model is used and its parameters are adjusted to pig experimental data. The parameter adjustment process has three steps: (1) compute nominal values for all model parameters; (2) determine the five most sensitive parameters; and (3) adjust only these five parameters. Stressed blood volume was selected by the algorithm, which emphasizes the importance of this parameter. The model was able to track experimental trends with a maximal root mean squared error of 29.2%. Computed stressed blood volume equals 486 ± 117 ml or 15.7 ± 3.6 ml/kg, which matches previous independent experiments on pigs, dogs and humans. The method proposed in this work thus provides a simple way to compute total stressed blood volume from usual hemodynamic data. [less ▲]

Detailed reference viewed: 19 (1 ULg)
Full Text
Peer Reviewed
See detailRelation between global end-diastolic volume and left ventricular end-diastolic volume
Pironet, Antoine ULg; MORIMONT, Philippe ULg; Kamoi, S. et al

in Critical Care (2015), 19(Suppl 1), 175

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailTracking stressed blood volume during vascular filling experiments
Pironet, Antoine ULg; Dauby, Pierre ULg; Chase, J. Geoffrey et al

in 13th Belgian Day on Biomedical Engineering (2014, November 28)

A three-chamber cardiovascular system model is used to compute stressed blood volume from filling experiments. As previously observed, stressed blood volume is a good predictor of the change in cardiac ... [more ▼]

A three-chamber cardiovascular system model is used to compute stressed blood volume from filling experiments. As previously observed, stressed blood volume is a good predictor of the change in cardiac output after fluid infusion. [less ▲]

Detailed reference viewed: 27 (5 ULg)
Full Text
See detailEstimating Ventricular Stroke Work from Aortic Pressure Waveform
Kamoi, Shun; Pretty, Christopher; Chiew, Yeong Shiong et al

in 13th Belgian Day on Biomedical Engineering (2014, November 28)

Detailed reference viewed: 12 (1 ULg)
Full Text
See detailTracking stressed blood volume during vascular filling experiments
Pironet, Antoine ULg; Dauby, Pierre ULg; Chase, J. Geoffrey et al

Poster (2014, November 28)

A three-chamber cardiovascular system model is used to compute stressed blood volume from filling experiments. As previously observed, stressed blood volume is a good predictor of the change in cardiac ... [more ▼]

A three-chamber cardiovascular system model is used to compute stressed blood volume from filling experiments. As previously observed, stressed blood volume is a good predictor of the change in cardiac output after fluid infusion. [less ▲]

Detailed reference viewed: 20 (4 ULg)
Full Text
See detailEstimating Ventricular Stroke Work from Aortic Pressure Waveform
Kamoi, Shun; Pretty, Christopher; Chiew, Yeong Shiong et al

Poster (2014, November 28)

Detailed reference viewed: 21 (2 ULg)
Full Text
See detailModel-Based Computation of Total Stressed Blood Volume from a Preload Reduction Experiment
Pironet, Antoine ULg; Desaive, Thomas ULg; Chase, J. Geoffrey et al

Conference (2014, August)

Total stressed blood volume is an important parameter for both doctors and engineers. From a medical point of view, it has been associated with the success or failure of fluid resuscitation therapy, which ... [more ▼]

Total stressed blood volume is an important parameter for both doctors and engineers. From a medical point of view, it has been associated with the success or failure of fluid resuscitation therapy, which is a treatment for cardiac failure. From an engineering point of view, this parameter dictates the cardiovascular system's dynamic behavior. Current methods to determine this parameter involve repeated phases of circulatory arrests followed by fluid administration. In this work, a method is developed to compute stressed blood volume from preload reduction experiments. A simple six-chamber cardiovascular system model is used and its parameters are adjusted to pig experimental data. The parameter adjustment process has three steps: (1) compute nominal values for all model parameters; (2) determine the most sensitive parameters; and (3) adjust only these sensitive parameters. Stressed blood volume was determined sensitive for all datasets, which emphasizes the importance of this parameter. The model was able to track experimental trends with a maximal mean squared error of 11.77 %. Stressed blood volume has been computed to range between 450 and 963 ml, or 15 to 28 ml/kg, which matches previous independent experiments on pigs, dogs and humans. Consequently, the method proposed in this work provides a simple way to compute total stressed blood volume from usual hemodynamic data. [less ▲]

Detailed reference viewed: 21 (4 ULg)
Full Text
Peer Reviewed
See detailStructural identifiability analysis of a cardiovascular system model
Pironet, Antoine ULg; Dauby, Pierre ULg; Chase, J. Geoffrey et al

Conference (2014, August)

A simple experimentally validated cardiovascular system model has been shown to be able to track the evolution of various diseases. The model has previously been made patient-specific by adjustment of its ... [more ▼]

A simple experimentally validated cardiovascular system model has been shown to be able to track the evolution of various diseases. The model has previously been made patient-specific by adjustment of its parameters on the basis of a minimal set of hemodynamic measurements. However, this model has not yet been shown to be structurally identifiable, which means that the adjusted model parameters may not be unique. The model equations were manipulated to show that, from a theoretical point of view, all of their parameters can be exactly retrieved from a restricted set of model outputs. However, this set of model outputs is still too large for a clinical application, because it includes left and right ventricular pressures. Consequently, further hypotheses that determine some model parameter values have to be made for the model to be clinically applicable. [less ▲]

Detailed reference viewed: 26 (9 ULg)
Peer Reviewed
See detailStructural Identifiability Analysis of a Cardiovascular System Model
Pironet, Antoine ULg; Dauby, Pierre ULg; Chase, J. Geoffrey et al

in Preprints of the 19th World Congress (2014, August)

A simple experimentally validated cardiovascular system model has been shown to be able to track the evolution of various diseases. The model has previously been made patient-specific by adjustment of its ... [more ▼]

A simple experimentally validated cardiovascular system model has been shown to be able to track the evolution of various diseases. The model has previously been made patient-specific by adjustment of its parameters on the basis of a minimal set of hemodynamic measurements. However, this model has not yet been shown to be structurally identifiable, which means that the adjusted model parameters may not be unique. The model equations were manipulated to show that, from a theoretical point of view, all of their parameters can be exactly retrieved from a restricted set of model outputs. However, this set of model outputs is still too large for a clinical application, because it includes left and right ventricular pressures. Consequently, further hypotheses that determine some model parameter values have to be made for the model to be clinically applicable. [less ▲]

Detailed reference viewed: 24 (8 ULg)
Peer Reviewed
See detailModel-Based Computation of Total Stressed Blood Volume from a Preload Reduction Experiment
Pironet, Antoine ULg; Desaive, Thomas ULg; Chase, J. Geofrrey et al

in Preprints of the 19th World Congress (2014, August)

Total stressed blood volume is an important parameter for both doctors and engineers. From a medical point of view, it has been associated with the success or failure of fluid resuscitation therapy, which ... [more ▼]

Total stressed blood volume is an important parameter for both doctors and engineers. From a medical point of view, it has been associated with the success or failure of fluid resuscitation therapy, which is a treatment for cardiac failure. From an engineering point of view, this parameter dictates the cardiovascular system’s dynamic behavior. Current methods to determine this parameter involve repeated phases of circulatory arrests followed by fluid administration. In this work, a method is developed to compute stressed blood volume from preload reduction experiments. A simple six-chamber cardiovascular system model is used and its parameters are adjusted to pig experimental data. The parameter adjustment process has three steps: (1) compute nominal values for all model parameters; (2) determine the most sensitive parameters; and (3) adjust only these sensitive parameters. Stressed blood volume was determined sensitive for all datasets, which emphasizes the importance of this parameter. The model was able to track experimental trends with a maximal mean squared error of 11.77 %. Stressed blood volume has been computed to range between 450 and 963 ml, or 15 to 28 ml/kg, which matches previous independent experiments on pigs, dogs and humans. Consequently, the method proposed in this work provides a simple way to compute total stressed blood volume from usual hemodynamic data. [less ▲]

Detailed reference viewed: 18 (9 ULg)
Full Text
Peer Reviewed
See detailSurvey about diffusion and adoption of glycaemic controller in European intensive care units
Penning, Sophie ULg; Pironet, Antoine ULg; Chase, J. Geoffrey et al

Conference (2014, August)

Detailed reference viewed: 8 (1 ULg)
Peer Reviewed
See detailSurvey about diffusion and adoption of glycaemic controller in European intensive care units
Penning, Sophie ULg; Pironet, Antoine ULg; Chase, J. Geoffrey et al

in Proceedings of the 19th IFAC Conference (2014, August)

Detailed reference viewed: 16 (7 ULg)
Full Text
Peer Reviewed
See detailMulti-scale model of the cardiovascular system
Kosta, Sarah ULg; Pironet, Antoine ULg; Negroni, Jorge et al

in 13th Belgian National Day on Biomedical Engineering (2014)

Detailed reference viewed: 17 (2 ULg)
Peer Reviewed
See detailEstimating Relative Change in Ventricular Stroke Work from Aortic Pressure Alone: Proof of Concept Study
Kamoi, Shun; Pretty, Christopher; Chiew, Yeong Shiong et al

in 48th DGBMT Biomedizinische Technik Conference (BMT 2014) (2014)

Continuous Ventricular Stroke Work (VSW) estimation requires accurate estimate of both stroke volume and aortic pressure. However, accurate beat-to-beat stroke volume measurement is highly invasive and ... [more ▼]

Continuous Ventricular Stroke Work (VSW) estimation requires accurate estimate of both stroke volume and aortic pressure. However, accurate beat-to-beat stroke volume measurement is highly invasive and thus typically unavailable in clinical practice. This study analyses the accuracy of a model-based method estimating relative change in VSW using only aortic pressure measurements. Using data from porcine experiment, the correlation coefficient was determined between the relative change of VSW from directly measured data and the model-based estimate of VSW. The result showed good agreement with, R=0.71. The model accurately captured the trend of VSW using only aortic pressure measurements and thus offers significant clinical value in early diagnosis and improving care for cardiovascular dysfunction. [less ▲]

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailMulti-scale model of the cardiovascular system
Kosta, Sarah ULg; Pironet, Antoine ULg; Negroni, Jorge et al

Poster (2014)

Detailed reference viewed: 8 (3 ULg)
Full Text
See detailEstimating Relative Change in Ventricular Stroke Work from Aortic Pressure
Kamoi, Shun; Pretty, Christopher; Chiew, Yeong Shiong et al

Conference (2014)

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailEarly detection of abnormal left ventricular relaxation in acute myocardial ischemia with a quadratic model.
MORIMONT, Philippe ULg; Pironet, Antoine ULg; Desaive, Thomas ULg et al

in Medical engineering & physics (2014)

AIMS: The time constant of left ventricular (LV) relaxation derived from a monoexponential model is widely used as an index of LV relaxation rate, although this model does not reflect the non-uniformity ... [more ▼]

AIMS: The time constant of left ventricular (LV) relaxation derived from a monoexponential model is widely used as an index of LV relaxation rate, although this model does not reflect the non-uniformity of ventricular relaxation. This study investigates whether the relaxation curve can be better fitted with a "quadratic" model than with the "conventional" monoexponential model and if changes in the LV relaxation waveform due to acute myocardial ischemia could be better detected with the quadratic model. METHODS AND RESULTS: Isovolumic relaxation was assessed with quadratic and conventional models during acute myocardial ischemia performed in 6 anesthetized pigs. Mathematical development indicates that one parameter (Tq) of the quadratic model reflects the rate of LV relaxation, while the second parameter (K) modifies the shape of the relaxation curve. Analysis of experimental data obtained in anesthetized pigs showed that the shape of LV relaxation consistently deviates from the conventional monoexponential decay. During the early phase of acute myocardial ischemia, the rate and non-uniformity of LV relaxation, assessed with the quadratic function, were significantly enhanced. Tq increased by 16% (p<0.001) and K increased by 12% (p<0.001) within 30 and 60min, respectively, after left anterior descending (LAD) coronary artery occlusion. However, no significant changes were observed with the conventional monoexponential decay within 60min of ischemia. CONCLUSIONS: The quadratic model better fits LV isovolumic relaxation than the monoexponential model and can detect early changes in relaxation due to acute myocardial ischemia that are not detectable with conventional methods. [less ▲]

Detailed reference viewed: 19 (4 ULg)
Full Text
See detailCalculez l'âge de vos artères
Pironet, Antoine ULg; Penning, Sophie ULg

Learning material (2013)

Poster présenté lors de la Nuit des Chercheurs, édition 2013. L'activité consistait à calculer la résistance et la compliance (élasticité) des artères des visiteurs, sur base des mesures suivantes ... [more ▼]

Poster présenté lors de la Nuit des Chercheurs, édition 2013. L'activité consistait à calculer la résistance et la compliance (élasticité) des artères des visiteurs, sur base des mesures suivantes : taille, poids, pression artérielle et fréquence cardiaque. [less ▲]

Detailed reference viewed: 21 (6 ULg)