References of "Nasir, Mehmet Nail"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailComplementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review
Deleu, Magali ULg; Crowet, Jean-Marc ULg; Nasir, Mehmet Nail ULg et al

in Biochimica et Biophysica Acta - Biomembranes (in press)

Plasma membranes are complex entities common to all living cells. The basic principle of their organization appears very simple, but they are actually of high complexity and represent very dynamic ... [more ▼]

Plasma membranes are complex entities common to all living cells. The basic principle of their organization appears very simple, but they are actually of high complexity and represent very dynamic structures. The interactions between bioactive molecules and lipids are important for numerous processes, from drug bioavailablility to viral fusion. The cell membrane is a carefully balanced environment and any change inflicted upon its structure by a bioactive molecule must be considered in conjunction with the overall effect that this may have on the function and integrity of the membrane. Conceptually, understanding the molecular mechanisms by which bioactive molecules interact with cell membranes is of fundamental importance. Lipid specificity is a key factor for the detailed understanding of the penetration and/or activity of lipid-interacting molecules and of mechanisms of some diseases. Further investigation in that way should improve drug discovery and development of membrane-active molecules in many domains such as health, plant protection or microbiology. In this review, we will present complementary biophysical approaches that can give information about lipid specificity at a molecular point of view. Examples of application will be given for different molecule types, from biomolecules to pharmacological drugs. A special emphasis is given to cyclic lipopeptides since they are interesting molecules in the scope of this review by combining a peptidic moiety and a lipidic tail and by exerting their activity via specific interactions with the plasma membrane. [less ▲]

Detailed reference viewed: 28 (14 ULg)
Peer Reviewed
See detailMembrane interactions of cyclic lipodepsipeptides from the viscosin group
Geudens, Niels; Feher, Krisztina; De Vleeschouwer et al

Poster (2014, June)

Detailed reference viewed: 8 (1 ULg)
Peer Reviewed
See detailModeling of the Iturinic Antimicrobial Lipopeptide Mycosubtilin at Interfaces
Loison, Claire; Nasir, Mehmet Nail ULg; Benichou, Emmanuel et al

Conference (2014, June)

Detailed reference viewed: 11 (2 ULg)
Full Text
See detailInteractions between new phenolic glycolipids and model membrane
Sainvitu, Pauline ULg; Nasir, Mehmet Nail ULg; Crowet, Jean-Marc ULg et al

Poster (2014, February 07)

Model membrane based on phospholipids (PL) layers are useful to mimic properties of plasma membranes. The interactions between new synthesized phenolic glycolipids (PGL) and biological membrane are ... [more ▼]

Model membrane based on phospholipids (PL) layers are useful to mimic properties of plasma membranes. The interactions between new synthesized phenolic glycolipids (PGL) and biological membrane are crucial to determine their potential as drug candidates and their cytotoxicity . [less ▲]

Detailed reference viewed: 37 (4 ULg)
Peer Reviewed
See detailInteractions of a potential plant elicitor mannolipid with plant model membranes
Polo Lozano, Damien ULg; Lins, Laurence ULg; Ongena, Marc ULg et al

Poster (2014, February 07)

The use of chemical pesticides causes problems for human health and environment. In this context, there is an increasing interest for alternative products such as biopesticides. Among them, elicitors act ... [more ▼]

The use of chemical pesticides causes problems for human health and environment. In this context, there is an increasing interest for alternative products such as biopesticides. Among them, elicitors act on the plants by inducing systemic resistance against diseases caused by fungal, viral, bacterial agents and insects. The target of the elicitors is supposed to be the plant plasma membranes (PPM). The main mechanisms of interaction of many elicitors involve proteic receptors but lipid-based elicitors (LBE) may preferably interact with the lipidic fractions of PPM. However there is no detailed information at the molecular level on the PPM-LBE interactions. Our work is focused on a original synthetic LBE composed of a mannoside linked to a myristic acid. It has potential elicitor activities as shown by the assays on tobacco root cells. These activities could be related to its interaction with the lipidic phase of PPM. Since PPM are complex entities, the analyses of the PPM- molecule interactions are quite difficult. In this context, these interactions were carried out using biomimetic membranes of PPM such as Langmuir monolayers and multilayers. The effects of our molecule on these membranar systems were investigated by biophysical and in silico approaches. [less ▲]

Detailed reference viewed: 77 (10 ULg)
Peer Reviewed
See detailNew alternatives to chemical pesticides: deciphering the action mechanisms of lipid based plant elicitors via complementary biophysical and biological approaches.
Nasir, Mehmet Nail ULg; Polo Lozano, Damien ULg; Luzuriaga Loaiza, Walter ULg et al

Poster (2014, February)

Nowadays, many health and environmental problems are caused by the use of chemical pesticides. In this context, an increasing demand for alternative products such as biopesticides has been observed. Among ... [more ▼]

Nowadays, many health and environmental problems are caused by the use of chemical pesticides. In this context, an increasing demand for alternative products such as biopesticides has been observed. Among biopesticides, elicitor molecules which are able to trigger immune defense responses in plants are one of the most promising options. Although numerous elicitors have been discovered, the mechanisms involved in the perception, by plants, of only a few molecules have been identified. These elicitors usually interact with proteic receptors but we have recently shown that they may also act on the lipid phase of the plasma membrane. This project first aims to improve our understanding of the molecular mechanisms involved in the recognition of specific lipid based elicitors (LBE). On that basis, the FIELD project will contribute to the design and the development of innovative compounds derived natural LBE. A multi-disciplinary approach, based on chemistry, bio-physics, bio-chemistry, and phytopathology will be followed by a consortium of different research groups from Gembloux Agro-Bio Tech in close collaboration with teams from foreign institutions. [less ▲]

Detailed reference viewed: 45 (5 ULg)
Peer Reviewed
See detailExploration on structure activity relation of natural, self-assembling cyclic lipodepsipeptides
Geudens, Niels; Feher, Kristina; De Vleeschouwer, Matthias et al

Poster (2014, February)

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailInteraction of fengycin with stratum corneum mimicking model membranes: a calorimetry study
Eeman, Marc; Oloffson, Gerd; Sparr, Emma et al

in Colloids and Surfaces B : Biointerfaces (2014), In Press

Based on its outstanding antifungal properties, it is reasonable to believe that fengycin might be efficient to topically treat localized dermatomycoses. Since most of the fungi species involved in the ... [more ▼]

Based on its outstanding antifungal properties, it is reasonable to believe that fengycin might be efficient to topically treat localized dermatomycoses. Since most of the fungi species involved in the formation of those mycotic skin diseases colonize primarily the stratum corneum (SC), studying the interaction between fengycin and SC-mimicking lipid membranes is a primary step to determine the potential of fengycin to overcome the physical barrier of the skin. In this respect, multilamellar lipid vesicles (MLVs), with a lipid composition mimicking that of the SC, were prepared and characterized by differential scanning calorimetry (DSC). The critical micelle concentration (CMC) of fengycin was also assessed under skin conditions and found to be 1.2 ± 0.1 μM. The molecular interactions of fengycin with SC-mimicking MLVs were investigated by both DSC and isothermal titration calorimetry (ITC). Results showed that the interactions were considerably affected by changes in lipid phase behaviour. At 40 °C and below, fengycin induced exothermic changes in the lipid structures suggesting that less-ordered lipid domains became more-ordered in presence of fengycin. At 60 °C, clearly endothermic interaction enthalpies were observed, which could arise from the “melting” of remaining solid domains enriched in high melting lipids that without fengycin melt at higher temperatures. [less ▲]

Detailed reference viewed: 4 (1 ULg)
Peer Reviewed
See detailSpectroscopic analysis of the remorin-lipid interactions at the moleculaer level
Nasir, Mehmet Nail ULg; Perraki, Artemis; Mongrand, Sébastien et al

Poster (2014)

Detailed reference viewed: 39 (8 ULg)