References of "Manfroid, Jean"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailContinued activity in P/2013 P5 PANSTARRS - The comet that should not be
Hainaut, O. R.; Boehnhardt, H.; Snodgrass, C. et al

in Astronomy and Astrophysics (in press)

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailToward a Unique Nitrogen Isotopic Ratio in Cometary Ices
Rousselot, Philippe; Pirali, Olivier; Jehin, Emmanuel ULg et al

in Astrophysical Journal Letters (2014), 780

Determination of the nitrogen isotopic ratios in different bodies of the solar system provides important information regarding the solar system's origin. We unambiguously identified emission lines in ... [more ▼]

Determination of the nitrogen isotopic ratios in different bodies of the solar system provides important information regarding the solar system's origin. We unambiguously identified emission lines in comets due to the [SUP]15[/SUP]NH[SUB]2[/SUB] radical produced by the photodissociation of [SUP]15[/SUP]NH[SUB]3[/SUB]. Analysis of our data has permitted us to measure the [SUP]14[/SUP]N/[SUP]15[/SUP]N isotopic ratio in comets for a molecule carrying the amine (-NH) functional group. This ratio, within the error, appears similar to that measured in comets in the HCN molecule and the CN radical, and lower than the protosolar value, suggesting that N[SUB]2[/SUB] and NH[SUB]3[/SUB] result from the separation of nitrogen into two distinct reservoirs in the solar nebula. This ratio also appears similar to that measured in Titan's atmospheric N[SUB]2[/SUB], supporting the hypothesis that, if the latter is representative of its primordial value in NH[SUB]3[/SUB], these bodies were assembled from building blocks sharing a common formation location. [less ▲]

Detailed reference viewed: 16 (6 ULg)
Full Text
Peer Reviewed
See detailA ring system detected around the Centaur (10199) Chariklo
Braga-Ribas; Sicardy; Ortiz et al

in Nature (2014)

Detailed reference viewed: 13 (4 ULg)
Full Text
Peer Reviewed
See detailHerschel observations of gas and dust in comet C/2006 W3 (Christensen) at 5 AU from the Sun
de Val-Borro, M; Bockelée-Morvan, D; Jehin, Emmanuel ULg et al

in Astronomy and Astrophysics (2014)

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailExtremely Organic-rich Coma of Comet C/2010 G2 (Hill) during its Outburst in 201
Kawakita, H; Dello Russo; Vervack, R et al

in The Astrophysical Journal (2014)

Detailed reference viewed: 11 (2 ULg)
Full Text
Peer Reviewed
See detailThe tumbling spin state of (99942) Apophis
Pravec, P; Scheirich, P; Ďurech, J et al

in Icarus (2014), 233

Detailed reference viewed: 6 (0 ULg)
Full Text
See detailL'astronomie dans le monde - 12
Manfroid, Jean ULg

Article for general public (2013)

ISON; (3200) Phaéton; Titan, lacs et hydrocarbures;Titan et le Soleil; Jets; z8_GND_5296; La nébuleuse de la Crevette; Planète isolée; Nébuleuse Toby Jug; Le pulsar du Crabe; Le bulbe de la Voie lactée ... [more ▼]

ISON; (3200) Phaéton; Titan, lacs et hydrocarbures;Titan et le Soleil; Jets; z8_GND_5296; La nébuleuse de la Crevette; Planète isolée; Nébuleuse Toby Jug; Le pulsar du Crabe; Le bulbe de la Voie lactée; ALMA au grand complet; APEX, ArTéMiS; Sgr A*; Première détection de l’acétate de méthyle dans l’espace [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
See detailComet C/2012 S1 (Ison)
Lisse, C. M.; Wolk, S. J.; Christian, D. J. et al

in Central Bureau Electronic Telegrams (2013), 3719

CBET 3719 available at Central Bureau for Astronomical Telegrams.

Detailed reference viewed: 21 (2 ULg)
Full Text
See detailComet C/2012 S1 (Ison)
Opitom, Cyrielle ULg; Jehin, Emmanuel ULg; Manfroid, Jean ULg et al

in Central Bureau Electronic Telegrams (2013), 3693

CBET 3693 available at Central Bureau for Astronomical Telegrams.

Detailed reference viewed: 12 (4 ULg)
Full Text
See detailComet C/2012 S1 (Ison)
Crovisier, J.; Colom, P.; Biver, N. et al

in Central Bureau Electronic Telegrams (2013), 3711

CBET 3711 available at Central Bureau for Astronomical Telegrams.

Detailed reference viewed: 18 (4 ULg)
Full Text
See detailStudy of the Forbidden Oxygen Lines in Comets at Different Heliocentric and Nucleocentric Distances
Decock, Alice ULg; Rousselot, P.; Jehin, Emmanuel ULg et al

in Bulletin of the American Astronomical Society (2013, October 01), 45

Oxygen is an important element in the chemistry of the solar system objects given its abundance and its presence in many molecules including H2O 80% of cometary ices). The analysis of oxygen atoms in ... [more ▼]

Oxygen is an important element in the chemistry of the solar system objects given its abundance and its presence in many molecules including H2O 80% of cometary ices). The analysis of oxygen atoms in comets can provide information not only on the comets themselves but also on the solar system. These atoms have been analyzed using the 3 forbidden oxygen lines [OI] observed in emission in the optical region at 5577.339 Å (the green line), 6300.304 Å and 6363.776 Å (the red lines) (Swings, 1962). Our analysis is based on a sample of 12 comets of various origins. The observing material is made of 53 high signal-to-noise spectra obtained with the high-resolution UVES spectrograph at the ESO VLT from 2002 to 2012 (Manfroid et al, 2009). After noticing that the green line is blended with one C2 line, we built synthetic spectra of C2 for each observing circumstances and we subtracted its contribution to the cometary spectra in order to ensure the decontamination of the 5577 Å line. Then, we measured the intensity of the 3 [OI] lines at different heliocentric distances. By comparing the green to red lines ratio (G/R) with the Bhardwaj & Raghuram (2012) effective excitation rates, we found that H2O is the main parent molecule when the comet is observed at 1 au. When the comet is located beyond 2.5 au from the Sun, CO2 also contributes to the production of oxygen. Studying forbidden oxygen lines could be a new way to estimate the abundances of CO2 in comets, a very difficult task from the ground (Decock et al. 2013). In order to estimate the effect of the quenching on our results, we analyzed the evolution of the G/R ratio at different nucleocentric distances. For nearby comets, we divided the extended 2D spectrum into several zones in order to analyze the oxygen lines as close as possible to the nucleus (down to ~10 km for the closest comets). Their analysis will allow us to study the link of the oxygen lines with the nucleocentric distance. We found a clear variation of the G/R ratio close to the comet nucleus that is in agreement with a contribution from CO2 as predicted by Raghuram & Bhardwaj (2013). [less ▲]

Detailed reference viewed: 30 (6 ULg)
Full Text
See detailA Search For 15NH2 Emission Lines In Comets
Rousselot, Philippe; Pirali, O.; Jehin, Emmanuel ULg et al

in Bulletin of the American Astronomical Society (2013, October 01), 45

The determination of nitrogen isotopic ratios in solar system objects is important for a good understanding of their origin. The measurements of [SUB]14[/SUB]N/[SUB]15[/SUB]N isotopic ratio done so far in ... [more ▼]

The determination of nitrogen isotopic ratios in solar system objects is important for a good understanding of their origin. The measurements of [SUB]14[/SUB]N/[SUB]15[/SUB]N isotopic ratio done so far in various solar system objects and molecules have revealed a great diversity (from 50 to 441), all of them, except Jupiter, being enriched in [SUB]15[/SUB]N compared to the protosolar nebula. Different explanations have been proposed to explain this enrichement. One of them suggests that these differences reflect the different interstellar N reservoirs from which N-bearing molecules are originating (Hily-Blant et al., 2013). These authors, from observations of H[SUB]13[/SUB]CN and HC[SUB]15[/SUB]N in two prestellar cores, suggest that the molecules carrying the nitrile- (-CN) functional group would be more enriched in [SUB]15[/SUB]N than the molecules carrying the amine (-NH) functional group. Comets are interesting targets to test this theory because they contain both HCN and NH[SUP]3[/SUP] molecules. So far the [SUB]14[/SUB]N/[SUB]15[/SUB]N ratio has only been measured in CN (Arpigny et al., 2003; Manfroid et al., 2009) and HCN (Bockelée-Morvan et al., 2005, 2008) in comets, leading for both species to [SUB]14[/SUB]N/[SUB]15[/SUB]N ≈ 150. Our work aimed at measuring the [SUB]14[/SUB]N/[SUB]15[/SUB]N isotopic ratio in NH[SUP]2[/SUP], which comes from NH[SUP]3[/SUP]. We have determined accurately the wavelengths of [SUB]15[/SUB]NH[SUP]2[/SUP] emission lines with the AILES beamline spectrometer at synchrotron SOLEIL by Fourier transform spectroscopy. The analysis of this spectrum has permitted to extract the [SUB]15[/SUB]NH[SUP]2[/SUP] emission lines wavelengths and to search for [SUB]15[/SUB]NH[SUP]2[/SUP] cometary emission lines. Thanks to a collection of spectra of 12 different comets obtained from 2002 to 2011 with the UVES spectrometer at the VLT ESO 8-m telescope (Manfroid et al., 2009), it has been possible to search for [SUB]15[/SUB]NH[SUP]2[/SUP] emission lines with a high sensitivity. We will present the results obtained from these data. Arpigny et al., Science, 301, 1522-1525, 2003 Bockelée-Morvan et al., in Comets II, ed. M. C. Festou, H. U. Keller, & H. A. Weaver (Tucson: Univ. Arizona Press), 391-423, 2005 Bockelée-Morvan et al., ApJ, 679, L49-L52, 2008 Hily-Blant et al., Icarus 223, 582-590, 2013 Manfroid et al., A&A, 503, 613-624, 2009 [less ▲]

Detailed reference viewed: 22 (1 ULg)
Full Text
See detailL'astronomie dans le monde - 10
Manfroid, Jean ULg

Article for general public (2013)

Alignement des nébuleusesplanétaires; Jumeau solaire; HH46/47; M87; Nébuleuses du Grand Nuage; Champ magnétique galactique; Aux frontières du Système solaire; Supernova; Sgr A*; Le courant magellanique ... [more ▼]

Alignement des nébuleusesplanétaires; Jumeau solaire; HH46/47; M87; Nébuleuses du Grand Nuage; Champ magnétique galactique; Aux frontières du Système solaire; Supernova; Sgr A*; Le courant magellanique; Naines brunes; 4C12.50 [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
See detailISON (C/2012 S1)
Manfroid, Jean ULg

Article for general public (2013)

Detailed reference viewed: 8 (0 ULg)
Full Text
See detailComet dust profiles from PACS images obtained in the framework of the HSSO project
Opitom, Cyrielle ULg; Bockelée-Morvan, D.; Hutsemekers, Damien ULg et al

Poster (2013, October)

In the framework of the HssO project the Herschel PACS instrument acquired images of 7 comets between June 2010 and February 2013. Three of these comets have been imaged at several heliocentric distances ... [more ▼]

In the framework of the HssO project the Herschel PACS instrument acquired images of 7 comets between June 2010 and February 2013. Three of these comets have been imaged at several heliocentric distances allowing us to follow up the evolution of the dust coma . Radial profiles have been derived for each image. We measured flux densities at 70, 110 and 160 μm in order to determine the comet dust production rate. In some cases, after deconvolution by the instrumental PSF, we might have detected the nucleus signal in the central pixels. [less ▲]

Detailed reference viewed: 8 (3 ULg)
Full Text
See detailTRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope)
Jehin, Emmanuel ULg; Gillon, Michaël ULg; Opitom, Cyrielle ULg et al

in EPSC Abstract 2013 (2013, September 13), 8

TRAPPIST is a 60-cm robotic telescope that has been installed in June 2010 at the ESO La Silla Observatory [1]. Operated from Liège (Belgium) it is devoted to the detection and characterisation of ... [more ▼]

TRAPPIST is a 60-cm robotic telescope that has been installed in June 2010 at the ESO La Silla Observatory [1]. Operated from Liège (Belgium) it is devoted to the detection and characterisation of exoplanets and to the study of comets and other small bodies in the Solar System. We describe here the hardware and the goals of the project and give an overview of the comet production rates monitoring after three years of operations. [less ▲]

Detailed reference viewed: 40 (22 ULg)
Full Text
See detailTRAPPIST monitoring of comet C/2012 F6 (Lemmon)
Opitom, Cyrielle ULg; Jehin, Emmanuel ULg; Manfroid, Jean ULg et al

Poster (2013, September 12)

Detailed reference viewed: 11 (1 ULg)
Full Text
See detailTRAPPIST monitoring of comet C/2012 F6 (Lemmon)
Opitom, Cyrielle ULg; Jehin, Emmanuel ULg; Manfroid, Jean ULg et al

in EPSC Abstract 2013 (2013, September 12), 8

Comet C/2012 F6 is a long-period comet that reached perihelion on March 23, 2012. The unexpected brightness of this comet since December 2012 allowed us to obtain narrowband photometry and to study its ... [more ▼]

Comet C/2012 F6 is a long-period comet that reached perihelion on March 23, 2012. The unexpected brightness of this comet since December 2012 allowed us to obtain narrowband photometry and to study its chemical composition as well as its rotation. [less ▲]

Detailed reference viewed: 23 (12 ULg)
Full Text
See detailStudy of the forbidden oxygen lines in comets at different heliocentric and nucleocentric distances
Decock, Alice ULg; Jehin, Emmanuel ULg; Rousselot, Philippe et al

in EPSC Abstract 2013 (2013, September 12), 8

Oxygen is an important element in the chemistry of the Solar System objects given its abundance and its presence in many molecules including H2O, which constitutes 80% of cometary ices. The analysis of ... [more ▼]

Oxygen is an important element in the chemistry of the Solar System objects given its abundance and its presence in many molecules including H2O, which constitutes 80% of cometary ices. The analysis of oxygen atoms in comets can provide information not only on the comets themselves but also on our Solar System. These atoms have been analyzed using the three forbidden oxygen lines [OI] observed in emission in the optical region at 5577 Å (the green line), 6300 Å and 6364 Å (the red lines) [1]. These lines are difficult to analyze because their detection requires high spectral and spatial resolutions. The oxygen analysis is interesting because it allows the determination of its parent molecules. [less ▲]

Detailed reference viewed: 27 (5 ULg)