References of "Ladang, Aurélie"
     in
Bookmark and Share    
Peer Reviewed
See detailtRNA modification: Elogator promotes breast metastasis in breast cancer
Delaunay, Sylvain ULg; Rapino, Francesca ULg; Zhou, Zhaoli ULg et al

Conference (2016, January 25)

Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Post-transcriptional nucleoside modifications of transfer RNAs (tRNAs) at the ... [more ▼]

Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Post-transcriptional nucleoside modifications of transfer RNAs (tRNAs) at the wobble U34 base are highly conserved and contribute to translation fidelity. Here, we show that ELP3 and CTU1/2, partner enzymes in U34 mcm5s2-tRNA modification, are upregulated in human breast cancers and sustain metastasis. Elp3 genetic ablation strongly impaired invasion and metastasis formation in the PyMT model of invasive breast cancer. Mechanistically, ELP3 and CTU1/2 support cellular invasion through the translation of the oncoprotein DEK. As a result, DEK promotes the IRES-dependent translation of the pro-invasive transcription factor LEF1. Consistently, a DEK mutant, whose codon composition is independent of U34 mcm5s2-tRNA modification, escapes the ELP3- and CTU1- dependent regulation and restores the IRES-dependent LEF1 expression. Our results demonstrate the key role of U34 tRNA modification to support specific translation during breast cancer progression and highlight a functional link between tRNA modification- and IRES-dependent translation during tumor cell invasion and metastasis. [less ▲]

Detailed reference viewed: 23 (7 ULg)
Full Text
Peer Reviewed
See detailElp3 drives Wnt-dependent tumor initiation and regeneration in the intestine
LADANG, Aurélie ULg; Rapino, Francesca ULg; Heukamp, Lukas et al

in Journal of Experimental Medicine (2015), 212(12), 2057-75

Tumor initiation in the intestine can rapidly occur from Lgr5(+) crypt columnar stem cells. Dclk1 is a marker of differentiated Tuft cells and, when coexpressed with Lgr5, also marks intestinal cancer ... [more ▼]

Tumor initiation in the intestine can rapidly occur from Lgr5(+) crypt columnar stem cells. Dclk1 is a marker of differentiated Tuft cells and, when coexpressed with Lgr5, also marks intestinal cancer stem cells. Here, we show that Elp3, the catalytic subunit of the Elongator complex, is required for Wnt-driven intestinal tumor initiation and radiation-induced regeneration by maintaining a subpool of Lgr5(+)/Dclk1(+)/Sox9(+) cells. Elp3 deficiency dramatically delayed tumor appearance in Apc-mutated intestinal epithelia and greatly prolonged mice survival without affecting the normal epithelium. Specific ablation of Elp3 in Lgr5(+) cells resulted in marked reduction of polyp formation upon Apc inactivation, in part due to a decreased number of Lgr5(+)/Dclk1(+)/Sox9(+) cells. Mechanistically, Elp3 is induced by Wnt signaling and promotes Sox9 translation, which is needed to maintain the subpool of Lgr5(+)/Dclk1(+) cancer stem cells. Consequently, Elp3 or Sox9 depletion led to similar defects in Dclk1(+) cancer stem cells in ex vivo organoids. Finally, Elp3 deficiency strongly impaired radiation-induced intestinal regeneration, in part because of decreased Sox9 protein levels. Together, our data demonstrate the crucial role of Elp3 in maintaining a subpopulation of Lgr5-derived and Sox9-expressing cells needed to trigger Wnt-driven tumor initiation in the intestine. [less ▲]

Detailed reference viewed: 95 (32 ULg)
See detailElongator: mcm5s2 modification fosters breast cancer metastasis
Delaunay, Sylvain ULg; Rapino, Francesca ULg; Zhou, Zhaoli ULg et al

Scientific conference (2015, March 09)

Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Post-transcriptional nucleoside modifications of transfer RNAs (tRNAs) at the ... [more ▼]

Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Post-transcriptional nucleoside modifications of transfer RNAs (tRNAs) at the wobble U34 base are highly conserved and contribute to translation fidelity. Here, we show that ELP3 and CTU1/2, partner enzymes in U34 mcm5s2-tRNA modification, are upregulated in human breast cancers and sustain metastasis. Elp3 genetic ablation strongly impaired invasion and metastasis formation in the PyMT model of invasive breast cancer. Mechanistically, ELP3 and CTU1/2 support cellular invasion through the translation of the oncoprotein DEK. As a result, DEK promotes the IRES-dependent translation of the pro-invasive transcription factor LEF1. Consistently, a DEK mutant, whose codon composition is independent of U34 mcm5s2-tRNA modification, escapes the ELP3- and CTU1- dependent regulation and restores the IRES-dependent LEF1 expression. Our results demonstrate the key role of U34 tRNA modification to support specific translation during breast cancer progression and highlight a functional link between tRNA modification- and IRES-dependent translation during tumor cell invasion and metastasis. [less ▲]

Detailed reference viewed: 16 (4 ULg)
Full Text
Peer Reviewed
See detailElongator promotes breast cancer metastasis
Delaunay, Sylvain ULg; Rapino, Francesca ULg; Heukamp, Lukas et al

Poster (2015, March)

Elongator is a protein complex (Elp1-6) involved in diverse cellular processes, such as protein acetylation and tRNA modification and whose function is essential for cell migration and neuronal ... [more ▼]

Elongator is a protein complex (Elp1-6) involved in diverse cellular processes, such as protein acetylation and tRNA modification and whose function is essential for cell migration and neuronal differentiation. Although it is well established that tumor development involves modifications of acetylation-deacetylation dynamics, as well as changes in protein translation, the role of Elongator in tumor initiation and invasion remains to be investigated in vivo. We generated a mouse model in which the Elp3 gene, encoding the catalytic subunit of the complex, is conditionally inactivated in the mammary gland epithelium by using the MMTV-CRE transgenic mouse. The role of Elp3 in tumor development and metastasis formation is then assessed in the PyMT model of invasive breast cancer. [less ▲]

Detailed reference viewed: 22 (5 ULg)
Full Text
Peer Reviewed
See detailNF-kappaB-induced KIAA1199 promotes survival through EGFR signalling.
Shostak, Kateryna ULg; Zhang, Xin; Hubert, Pascale ULg et al

in Nature communications (2014), 5

Constitutive activation of EGFR- and NF-kappaB-dependent pathways is a hallmark of cancer, yet signalling proteins that connect both oncogenic cascades are poorly characterized. Here we define KIAA1199 as ... [more ▼]

Constitutive activation of EGFR- and NF-kappaB-dependent pathways is a hallmark of cancer, yet signalling proteins that connect both oncogenic cascades are poorly characterized. Here we define KIAA1199 as a BCL-3- and p65-dependent gene in transformed keratinocytes. KIAA1199 expression is enhanced on human papillomavirus (HPV) infection and is aberrantly expressed in clinical cases of cervical (pre)neoplastic lesions. Mechanistically, KIAA1199 binds Plexin A2 and protects from Semaphorin 3A-mediated cell death by promoting EGFR stability and signalling. Moreover, KIAA1199 is an EGFR-binding protein and KIAA1199 deficiency impairs EGF-dependent Src, MEK1 and ERK1/2 phosphorylations. Therefore, EGFR stability and signalling to downstream kinases requires KIAA1199. As such, KIAA1199 promotes EGF-mediated epithelial-mesenchymal transition (EMT). Taken together, our data define KIAA1199 as an oncogenic protein induced by HPV infection and constitutive NF-kappaB activity that transmits pro-survival and invasive signals through EGFR signalling. [less ▲]

Detailed reference viewed: 41 (6 ULg)
Peer Reviewed
See detailElp3 is required for initiation of colon cancer
Ladang, Aurélie ULg; Heukamp, L; Buettner, R et al

Poster (2013, September 18)

Detailed reference viewed: 22 (6 ULg)
Full Text
Peer Reviewed
See detailDERP6 (ELP5) and C3ORF75 (ELP6) regulate tumorigenicity and migration of melanoma cells as subunits of Elongator
Close, Pierre ULg; Gillard, Magali; Ladang, Aurélie ULg et al

in Journal of Biological Chemistry (2012)

The Elongator complex is composed of 6 subunits (Elp1-Elp6) and promotes RNAPII transcript elongation through histone acetylation in the nucleus as well as tRNA modification in the cytoplasm. This ... [more ▼]

The Elongator complex is composed of 6 subunits (Elp1-Elp6) and promotes RNAPII transcript elongation through histone acetylation in the nucleus as well as tRNA modification in the cytoplasm. This acetyltransferase complex directly or indirectly regulates numerous biological processes ranging from exocytosis and resistance to heat shock in yeast to cell migration and neuronal differentiation in higher eukaryotes. The identity of human ELP1 through ELP4 has been reported but human ELP5 and ELP6 have remained uncharacterized. Here, we report that DERP6 (ELP5) and C3ORF75 (ELP6) encode these subunits of human Elongator. We further investigated the importance and function of these two subunits by a combination of biochemical analysis and cellular assays. Our results show that DERP6/ELP5 is required for the integrity of Elongator and directly connects ELP3 to ELP4. Importantly, the migration and tumorigenicity of melanomaderived cells are significantly decreased upon Elongator depletion through ELP1 or ELP3. Strikingly, DERP6/ELP5 and C3ORF75/ELP6-depleted melanoma cells have similar defects, further supporting the idea that DERP6/ELP5 and C3ORF75/ELP6 are essential for Elongator function. Together, our data identify DERP6/ELP5 and C3ORF75/ELP6 as key players for migration, invasion and tumorigenicity of melanoma cells, as integral subunits of Elongator. [less ▲]

Detailed reference viewed: 51 (18 ULg)