References of "Kieffer, Pol"
     in
Bookmark and Share    
Full Text
See detailThe effects of a cadmium exposure on poplar plants: A combined proteomic, physiological and biochemical approach to unravel stress-responses in poplar.
Kieffer, Pol ULg

Doctoral thesis (2012)

The industrial revolution in the 1800s and the subsequent industrialization had the consequence of an anthropogenic release of many organic and inorganic pollutants. Among these pollutants, cadmium is ... [more ▼]

The industrial revolution in the 1800s and the subsequent industrialization had the consequence of an anthropogenic release of many organic and inorganic pollutants. Among these pollutants, cadmium is very problematic due to its high toxicity. It can induce significant damage to the vegetation and an accumulation in farmland introduces the pollutant into the food chain. This creates a possible major health risk for humans. Poplar plants, as a member of the Salicaceae family, seem to possess a certain tolerance to this toxic metal and accumulate significant amount in their aerial parts, making poplar a possible candidate for phytoremedation. The metabolic and physiological impact of cadmium have been studied as well in field trials as in controlled laboratory conditions, but mostly in clearly targeted studies focusing on a few key aspects. The recent advent of more global techniques such as transcriptomics and proteomics, make it possible to obtain new results. In the thesis presented here, a proteomic study of the short-term and long-term effects of cadmium on poplar leaf and roots metabolic processes in controlled laboratory conditions was carried out. With the help of this technique, complemented with biochemical and physiological approaches and with morphological observations, it was possible to obtain results on the stress-coping mechanisms underlying an acute first response, but also on the more general adaptation mechanism which make it possible for the poplar plants to tolerate significant amounts of cadmium. Results showed a negative impact on important cell processes like photosynthesis and ATP synthesis and the antioxidant system, explaining the impaired growth. Similar results could be obtained in roots, although the stress seemed much more acute, as evidenced by the stronger accumulation of typical stress proteins (i.e. heat shock proteins). In a final set of experiments a controlled combination of two stresses (cadmium and nonlethal chilling stress; 4°C) allowed separating specific cadmium responses from a more general stress response. Cadmium had a much more severe impact on plant survival when combined with an additional constraints. In this present work, the procedures, results and conclusions obtained are presented in detail. [less ▲]

Detailed reference viewed: 44 (8 ULg)
Full Text
Peer Reviewed
See detailCombining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves
Kieffer, Pol ULg; Planchon, Sébastien; Oufir, Mouhssin et al

in Journal of Proteome Research (2009), 8

Detailed reference viewed: 95 (9 ULg)