References of "Kerschen, Gaëtan"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailComplex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes
Renson, Ludovic ULg; Noël, Jean-Philippe ULg; Kerschen, Gaëtan ULg

in Nonlinear Dynamics (in press)

This paper investigates the dynamics of a real-life aerospace structure possessing a strongly nonlinear component with multiple mechanical stops. A full-scale finite element model is built for gaining ... [more ▼]

This paper investigates the dynamics of a real-life aerospace structure possessing a strongly nonlinear component with multiple mechanical stops. A full-scale finite element model is built for gaining additional insight into the nonlinear dynamics that was observed experimentally, but also for uncovering additional nonlinear phenomena, such as quasiperiodic regimes of motion. Forced/unforced, damped/undamped numerical simulations are carried out using advanced techniques and theoretical concepts such as numerical continuation and nonlinear normal modes. [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
See detailSuppression of Limit Cycle Oscillations using the Nonlinear Tuned Vibration Absorber
Habib, Giuseppe ULg; Kerschen, Gaëtan ULg

in Proceeding IMAC XXXIII A Conference and Exposition on Structural Dynamics, Orlando 2-5 February 2015 (2015, February 03)

The objective of the present study is to mitigate, or even completely eliminate, the limit cycle oscillations in mechanical systems using a passive nonlinear absorber, termed the nonlinear tuned vibration ... [more ▼]

The objective of the present study is to mitigate, or even completely eliminate, the limit cycle oscillations in mechanical systems using a passive nonlinear absorber, termed the nonlinear tuned vibration absorber (NLTVA). An unconventional aspect of the NLTVA is that the mathematical form of its restoring force is not imposed a priori, as it is the case for most existing nonlinear absorbers. The NLTVA parameters are determined analytically using stability and bifurcation analyses, and the resulting design is validated numerically using the MATCONT software. The proposed developments are illustrated using a Van der Pol-Du ng primary system. [less ▲]

Detailed reference viewed: 22 (6 ULg)
Full Text
See detailExperimental demonstration of a 3D-printed nonlinear tuned vibration absorber
Grappasonni, Chiara ULg; Habib, Giuseppe ULg; Detroux, Thibaut ULg et al

in Proceedings of the International Modal Analysis Conference (IMAC) XXXIII (2015, February)

Engineering structures are designed to be lighter and more flexible, hence reducing the extent of application of linear dynamic models. Concurrently, vibration mitigation is required for enhancing the ... [more ▼]

Engineering structures are designed to be lighter and more flexible, hence reducing the extent of application of linear dynamic models. Concurrently, vibration mitigation is required for enhancing the performance, comfort or safety in real-life applications. Passive linear vibration absorbers are purpose-built, often designed using Den Hartog's equal-peak strategy. However, nonlinear systems are known to exhibit frequency-energy-dependent oscillations which linear absorbers cannot effectively damp out. In this context, the paper introduces a new nonlinear tuned vibration absorber (NLTVA) whose nonlinear functional form is tailored according to the frequency-energy dependence of the nonlinear primary structure. The NLTVA design aims at ensuring equal peaks in the nonlinear receptance function for an as large as possible range of forcing amplitudes, hence generalizing Den Hartog's method to nonlinear systems. Our focus in this study is on experimental demonstration of the NLTVA performance using a primary structure consisting of a cantilever beam with a geometrically nonlinear component at its free end. The absorber is implemented using a doubly-clamped beam fabricated thanks to 3D printing. The NLTVA performance is also compared with that of the classical linear tuned vibration absorber. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailNonlinear generalization of Den Hartog׳s equal-peak method
Habib, Giuseppe ULg; Detroux, Thibaut ULg; Viguié, Régis et al

in Mechanical Systems & Signal Processing (2015), 52-53

This study addresses the mitigation of a nonlinear resonance of a mechanical system. In view of the narrow bandwidth of the classical linear tuned vibration absorber, a nonlinear absorber, termed the ... [more ▼]

This study addresses the mitigation of a nonlinear resonance of a mechanical system. In view of the narrow bandwidth of the classical linear tuned vibration absorber, a nonlinear absorber, termed the nonlinear tuned vibration absorber (NLTVA), is introduced in this paper. An unconventional aspect of the NLTVA is that the mathematical form of its restoring force is tailored according to the nonlinear restoring force of the primary system. The NLTVA parameters are then determined using a nonlinear generalization of Den Hartog׳s equal-peak method. The mitigation of the resonant vibrations of a Duffing oscillator is considered to illustrate the proposed developments. [less ▲]

Detailed reference viewed: 13 (4 ULg)
Full Text
See detailExperimental nonlinear identification of an aircraft with bolted connections
De Filippis, Giovanni; Noël, Jean-Philippe ULg; Kerschen, Gaëtan ULg et al

in Proceedings of the International Modal Analysis Conference (IMAC) XXXIII (2015, February)

Aircraft structures are known to be prone to nonlinear phenomena, especially as they constantly become lighter and hence more flexible. One specific challenge that is regularly encountered is the modeling ... [more ▼]

Aircraft structures are known to be prone to nonlinear phenomena, especially as they constantly become lighter and hence more flexible. One specific challenge that is regularly encountered is the modeling of the mounting interfaces between aircraft subcomponents. Indeed, for large amplitudes of vibration, such interfaces may loosen and, in turn, trigger complex mechanisms such as friction and clearances. In this context, the present work intends to investigate the nonlinear dynamics of the Morane–Saulnier Paris aircraft, accessible at ONERA. This aircraft possesses multiple bolted connections between two external fuel tanks and wing tips. The objective of the paper is specifically to carry out an adequate identification of the numerous nonlinearities affecting the dynamics of this full-scale structure. Nonlinearity detection and the subsequent subspace-based parameter estimation have been performed on experimental data, collected during an on-ground test campaign. Nonlinearity detection is first achieved by the comparison of frequency response functions estimated at low excitation level, with those obtained at high amplitude level, yielding insight towards accurately characterizing the behavior of the bolted connections. Then, a nonlinear subspace identification method is applied to measured data to estimate the linear and nonlinear parameters of the structure and novel strategies and tools that overcome specific arisen problems are developed. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
See detailExperimental modal analysis of nonlinear structures using broadband data
Noël, Jean-Philippe ULg; Renson, Ludovic ULg; Grappasonni, Chiara ULg et al

in Proceedings of the International Modal Analysis Conference (IMAC) XXXIII (2015, February)

The objective of the present paper is to develop a rigorous identification methodology of nonlinear normal modes (NNMs) of engineering structures. This is achieved by processing experimental measurements ... [more ▼]

The objective of the present paper is to develop a rigorous identification methodology of nonlinear normal modes (NNMs) of engineering structures. This is achieved by processing experimental measurements collected under broadband forcing. The use of such a type of forcing signal allows to excite multiple NNMs simultaneously and, in turn, to save testing time. A two-step methodology integrating nonlinear system identification and numerical continuation of periodic solutions is proposed for the extraction of the individual NNMs from broadband input and output data. It is demonstrated using a numerical cantilever beam possessing a cubic nonlinearity at its free end. The proposed methodology can be viewed as a nonlinear generalization of the phase separation techniques routinely utilized for experimental modal analysis of linear structures. The paper ends with a comparison between this new nonlinear phase separation technique and a previously-developed nonlinear phase resonance method. [less ▲]

Detailed reference viewed: 13 (1 ULg)
Full Text
See detailThe Harmonic Balance Method for Bifurcation Analysis of Nonlinear Mechanical Systems
Detroux, Thibaut ULg; Renson, Ludovic ULg; Masset, Luc ULg et al

in Proceedings of the SEM IMAC XXXIII (2015)

Because nowadays structural engineers are willing to use or at least understand nonlinearities instead of simply avoiding them, there is a need for numerical tools performing analysis of nonlinear large ... [more ▼]

Because nowadays structural engineers are willing to use or at least understand nonlinearities instead of simply avoiding them, there is a need for numerical tools performing analysis of nonlinear large-scale structures. Among these techniques, the harmonic balance (HB) method is certainly one of the most commonly used to study finite element models with reasonably complex nonlinearities. However, in its classical formulation the HB method is limited to the approximation of periodic solutions. For this reason, the present paper proposes to extend the method to the detection and tracking of codimension-1 bifurcations in the system parameters space. As an application, the frequency response of a spacecraft is studied, together with two nonlinear phenomena, namely quasiperiodic oscillations and detached resonance curves. This example illustrates how bifurcation tracking using the HB method can be employed as a promising design tool for detecting and eliminating such undesired behaviors. [less ▲]

Detailed reference viewed: 30 (9 ULg)
Full Text
Peer Reviewed
See detailGrey-box identification of a non-linear solar array structure using cubic splines
Noël, Jean-Philippe ULg; Kerschen, Gaëtan ULg; Foltête, Emmanuel et al

in International Journal of Non-Linear Mechanics (2014), 67

Most identification methods in non-linear structural dynamics assume in advance a mathematical model of the non-linearities. This is however possible in specific situations only, since non-linear effects ... [more ▼]

Most identification methods in non-linear structural dynamics assume in advance a mathematical model of the non-linearities. This is however possible in specific situations only, since non-linear effects may be caused by numerous phenomena and a priori knowledge is generally limited. The present paper investigates the usefulness of piecewise third-order polynomials, termed cubic splines, to identify the complex non-linear dynamics of solar arrays in their stowed configuration. The estimation of the model parameters is achieved using the frequency-domain non-linear subspace identification (FNSI) method. A distinct advantage of the FNSI approach is its capability to calculate accurately a large number of parameters, while maintaining an acceptable computational burden. This makes tractable the use of cubic splines to represent non-linearity in real-life mechanical systems, as the dimensionality of the inverse problem is known to increase dramatically in this case. The experimental structure of interest consists of two parallel aluminium plates assembled with bolted connections. This application is challenging because of the existence of impacts between the two plates at high excitation amplitude, and of the activation of complicated stiffness and damping mechanisms within the bolted connections. [less ▲]

Detailed reference viewed: 13 (3 ULg)
Full Text
Peer Reviewed
See detailPiezoelectric vibration damping using resonant shunt circuits: an exact solution
Soltani, Payam ULg; Kerschen, Gaëtan ULg; Tondeau, Gilles et al

in Smart Materials & Structures (2014), 23

Detailed reference viewed: 5 (0 ULg)
Full Text
Peer Reviewed
See detailProbabilistic Assessment of Lifetime of Low-Earth-Orbit Spacecraft: Uncertainty Propagation and Sensitivity Analysis
Dell'Elce, Lamberto ULg; Kerschen, Gaëtan ULg

in Journal of Guidance Control & Dynamics (2014)

This paper is devoted to the probabilistic uncertainty quantification of orbital lifetime estimation of low-altitude satellites. Specifically, given a detailed characterization of the dominant sources of ... [more ▼]

This paper is devoted to the probabilistic uncertainty quantification of orbital lifetime estimation of low-altitude satellites. Specifically, given a detailed characterization of the dominant sources of uncertainty, we map this input into a probabilistic characterization of the orbital lifetime through orbital propagation. Standard Monte Carlo propagation is first considered. The concept of drag correction is then introduced to facilitate the use of polynomial chaos expansions and to make uncertainty propagation computationally effective. Finally, the obtained probabilistic model is exploited to carry out stochastic sensitivity analyses, which in turn allow gaining insight into the impact uncertainties have on orbital lifetime. The proposed developments are illustrated using one CubeSat of the QB50 constellation. [less ▲]

Detailed reference viewed: 5 (0 ULg)
Full Text
See detailA rigorous phase separation method for testing nonlinear structures
Noël, Jean-Philippe ULg; Renson, Ludovic ULg; Grappasonni, Chiara ULg et al

in Proceedings of ISMA 2014 - International Conference on Noise and Vibration Engineering (2014, September)

The objective of the present paper is to develop a rigorous identification methodology of nonlinear normal modes (NNMs) of engineering structures. This is achieved by processing experimental measurements ... [more ▼]

The objective of the present paper is to develop a rigorous identification methodology of nonlinear normal modes (NNMs) of engineering structures. This is achieved by processing experimental measurements collected under broadband forcing. The use of such a type of forcing signal allows to excite multiple NNMs simultaneously and, in turn, to save testing time. A two-step methodology integrating nonlinear system identification and numerical continuation of periodic solutions is proposed for the extraction of the individual NNMs from broadband input and output data. It is demonstrated using a numerical cantilever beam possessing a cubic nonlinearity at its free end. The proposed methodology can be viewed as a nonlinear generalization of the phase separation techniques routinely utilized for experimental modal analysis of linear structures. [less ▲]

Detailed reference viewed: 15 (0 ULg)
See detailPractical design of a nonlinear tuned vibration absorber
Grappasonni, Chiara ULg; Habib, Giuseppe ULg; Detroux, Thibaut ULg et al

in Proceedings of the ISMA 2014 conference (2014, September)

The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent ... [more ▼]

The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog’s equal-peak method is proposed to ensure equal peaks in the nonlinear frequency response for a large range of forcing amplitudes. An analytical tuning procedure is developed and provides the load-deflection characteristic of the NLTVA. Based on this prescribed relation, the NLTVA design is performed by two different approaches, namely thanks to (i) analytical formulas of uniform cantilever and doubly-clamped beams and (ii) numerical shape optimization of beams with varying width and thickness. A primary system composed of a cantilever beam with a geometrically nonlinear component at its free end serves to illustrate the proposed methodology. [less ▲]

Detailed reference viewed: 20 (4 ULg)
See detailExperimental evidence and numerical prediction of nonlinear modal interactions in a real-life aerospace structure
Renson, Ludovic ULg; Noël, Jean-Philippe ULg; Kerschen, Gaëtan ULg

in Proceedings of the ISMA 2014 conference (2014, September)

During the last decade, the existence of nonlinear behaviour in spacecraft dynamic testing was frequently attested. However, current practice in industry is still to ignore nonlinearities, arguably ... [more ▼]

During the last decade, the existence of nonlinear behaviour in spacecraft dynamic testing was frequently attested. However, current practice in industry is still to ignore nonlinearities, arguably because their analysis is regarded as impractical. The objective of the present contribution is to show that there now exists experimental and numerical methodologies which can deal with nonlinear phenomena in real-life structures. Specifically, this study investigates nonlinear modal interactions evidenced during the qualification campaign of the SmallSat spacecraft developed by EADS-Astrium. The ability to understand and reliably predict such interactions is of utmost importance as they may involve energy transfer between modes and, in turn, jeopardise the structural integrity. The paper proceeds in two steps, leading to great-fidelity reproductions of the experimental observations. In the first step, sine-sweep data collected during the qualification campaign are exploited to build a nonlinear computational model of the SmallSat with good predictive capabilities. To this end, the complete progression through nonlinearity detection, characterisation and parameter estimation is carried out by means of several techniques, such as the wavelet transform and the restoring force surface method. In the second step, the computational model is exploited through continuation algorithms to compute the nonlinear normal modes of the spacecraft and predict potential interactions. A very good agreement between experimental and numerical results is obtained for 2:1 interactions between modes with non-commensurate linear frequencies. [less ▲]

Detailed reference viewed: 20 (7 ULg)
Full Text
Peer Reviewed
See detailEnhancement of ray tracing method for radiative heat transfer: application to EUI space instrument
Jacques, Lionel ULg; Masset, Luc ULg; Kerschen, Gaëtan ULg

in Proceedings of the 15th International Heat Transfer Conference, IHTC-15 (2014, August)

The finite element method (FEM) is widely used in mechanical engineering, in particular for space structure design. However, FEM is not yet often used for thermal engineering of space structures where the ... [more ▼]

The finite element method (FEM) is widely used in mechanical engineering, in particular for space structure design. However, FEM is not yet often used for thermal engineering of space structures where the lumped parameter method is still dominant. Radiative exchange factors (REFs), used to calculate radiative thermal exchanges in space, are usually computed through Monte Carlo ray tracing. Due to the large number of elements composing a FE model, the computation of the REFs is prohibitively expensive. The isocell method aims at reducing the computational effort of the REFs with FEM, by decreasing the number of rays required to achieve a given accuracy. Based on Nusselt’s analogy, the ray direction sampling is carried out by sampling the unit disc to derive the ray directions. The isocell method is a special case of stratified sampling. It divides the unit disc into cells of almost same area and shape from which random points are generated. This enhances the uniformity of the ray directions and leads to faster convergence. This isocell method is associated with different surface sampling to derive the REFs. The method is benchmarked against ESARAD, the standard thermal analysis ray tracing engine used in the European aerospace industry. One entrance baffle of the Extreme Ultraviolet Imager (EUI) instrument developedat the Centre Spatial de Liège in Belgium is used as benchmarking case. Solar Orbiter is an European Space Agency mission to be launched in a Sun-centered 0.28 perihelion orbit. [less ▲]

Detailed reference viewed: 35 (8 ULg)
Full Text
See detailExperimental analysis of 2:1 modal interactions with noncommensurate linear frequencies in an aerospace structure
Noël, Jean-Philippe ULg; Renson, Ludovic ULg; Kerschen, Gaëtan ULg

in Proceedings of the 8th European Nonlinear Dynamics Conference (ENOC) (2014, July)

Nonlinear interactions between modes with noncommensurate linear frequencies are studied. It is experimentally evidenced that a strongly nonlinear, full-scale aerospace structure may exhibit such 2:1 ... [more ▼]

Nonlinear interactions between modes with noncommensurate linear frequencies are studied. It is experimentally evidenced that a strongly nonlinear, full-scale aerospace structure may exhibit such 2:1 interactions in typical testing conditions. The experimental observations are compared with numerical predictions. [less ▲]

Detailed reference viewed: 20 (3 ULg)
Full Text
Peer Reviewed
See detailStability and bifurcation analysis of a Van der Pol–Duffing oscillator with a nonlinear tuned vibration absorber
Habib, Giuseppe ULg; Kerschen, Gaëtan ULg

Conference (2014, July)

The Van der Pol (VdP) oscillator is a paradigmatic model for description of self-excited oscillations, which are of practical interest in many engineering applications. In this paper the dynamics of a VdP ... [more ▼]

The Van der Pol (VdP) oscillator is a paradigmatic model for description of self-excited oscillations, which are of practical interest in many engineering applications. In this paper the dynamics of a VdP-Duffing (VdPD) oscillator with an attached nonlinear tuned vibration absorber (NLTVA) is considered; the NLTVA has both linear and nonlinear restoring force terms. In the first part of this work, the stability of the trivial solution of the system is investigated, following results of previous works. The analysis allows to define an optimal tuning rule for the linear parameters of the absorber, which substantially enlarges the domain of safe operation of the primary system. In this case, the system loses stability through a double Hopf bifurcation. In the second part of this work, the bifurcations occurring at the loss of stability are analytically investigated, using the technique of the center manifold reduction and transformation to normal form. The obtained results show the effects of the nonlinear parameter of the absorber, which, in turn, allows to define its optimal value in order to avoid subcriticality and reduce the amplitude of self-excited oscillations. [less ▲]

Detailed reference viewed: 38 (5 ULg)
Full Text
Peer Reviewed
See detailComputation of damped nonlinear normal modes with internal resonances: a boundary value approach
Renson, Ludovic ULg; Touzé, Cyril; Kerschen, Gaëtan ULg

in Proceedings of the 8th European Nonlinear Dynamics Conference (ENOC 2014) (2014, July)

This paper considers the computation of nonlinear normal modes (NNMs) defined as two-dimensional manifolds in phase space. Because existing methods use explicit manifold parameterization, NNM computation ... [more ▼]

This paper considers the computation of nonlinear normal modes (NNMs) defined as two-dimensional manifolds in phase space. Because existing methods use explicit manifold parameterization, NNM computation in the presence of internal resonances requires multiple pairs of constraint coordinates. This paper investigates an alternative method for which the manifold is computed using successive boundary value problems. [less ▲]

Detailed reference viewed: 32 (6 ULg)
Full Text
Peer Reviewed
See detailEnhancement of ray tracing method for radiative heat transfer with new isocell quasi-monte carlo technique and application to EUI space instrument
Jacques, Lionel ULg; Masset, Luc ULg; Kerschen, Gaëtan ULg

in Proceedings of the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, HEFAT2014 (2014, July)

Monte Carlo ray tracing method for thermal analysis. The rationale for this research is the speed-up of radiative heat transfer computation with the Finite Element Method, widely used in mechanical ... [more ▼]

Monte Carlo ray tracing method for thermal analysis. The rationale for this research is the speed-up of radiative heat transfer computation with the Finite Element Method, widely used in mechanical engineering especially for space structure design but not yet often for thermal analysis of these structures. Based on Nusselt’s analogy, the ray direction sampling is done by sampling the unit disc to derive the ray directions. Stratified sampling is applied to the unit disc that is divided into cells or strata into which random points are generated. The isocell method relies on cells that have the particularity of presenting almost the same area and shape. This enhances the uniformity of the generated quasi-random sequence of ray directions and leads to faster convergence. The isocell method is associated with different surface sampling to derive REFs. The method is benchmarked against ESARAD, the standard ray tracing engine of the thermal analysis software used in the European aerospace industry. Various geometries are used. In particular, one entrance baffle of the Extreme Ultraviolet Imager (EUI) instrument developed at the Centre Spatial de Liège in Belgium is presented. The EUI instrument of the Solar Orbiter European Space Agency mission and will be launched in a 0.28 perihelion orbit around the Sun in 2018. [less ▲]

Detailed reference viewed: 25 (3 ULg)
See detailRay tracing enhancement for space thermal analysis: isocell method
Jacques, Lionel ULg; Masset, Luc ULg; Kerschen, Gaëtan ULg

in Sarler, Bozidar; Massaroti, Nicola; Nithiarasu, Perumal (Eds.) Third International Conference on Computational Methods for Thermal Problems (2014, June 02)

The finite element method (FEM) is widely used in mechanical engineering, especially for space structure design. However, FEM is not yet often used for thermal engineering of space structures where the ... [more ▼]

The finite element method (FEM) is widely used in mechanical engineering, especially for space structure design. However, FEM is not yet often used for thermal engineering of space structures where the lumped parameter method is still dominant. Radiative exchange factors (REFs) are usually computed through Monte Carlo ray-tracing. Due to the large number of elements composing a FE model, the computation of the REFs is prohibitively expensive. The developments of the new Isocell quasi-Monte Carlo ray tracing method are presented. The Isocell method enhances the uniformity of the generated quasi-random sequence of ray directions and leads to faster convergence. It is associated with different surface sampling to derive the REFs. The method is benchmarked against ESARAD, the standard ray-tracing engine for thermal analysis used in the European aerospace industry. Various geometries are used. In particular, one entrance baffle of the Extreme Ultraviolet Imager (EUI) instrument developed at the Centre Spatial de Liège in Belgium is used. The EUI instrument of the Solar Orbiter European Space Agency mission and will be launched in a Sun-centered 0.28 perihelion orbit in 2018. [less ▲]

Detailed reference viewed: 21 (4 ULg)
Full Text
Peer Reviewed
See detailComplex dynamics of a nonlinear aerospace structure: experimental identification and modal interactions
Noël, Jean-Philippe ULg; Renson, Ludovic ULg; Kerschen, Gaëtan ULg

in Journal of Sound & Vibration (2014), 333

Nonlinear system identification is a challenging task in view of the complexity and wide variety of nonlinear phenomena. The present paper addresses the identification of a real-life aerospace structure ... [more ▼]

Nonlinear system identification is a challenging task in view of the complexity and wide variety of nonlinear phenomena. The present paper addresses the identification of a real-life aerospace structure possessing a strongly nonlinear component with multiple mechanical stops. The complete identification procedure, from nonlinearity detection and characterization to parameter estimation, is carried out based upon experimental data. The combined use of various analysis techniques, such as the wavelet transform and the restoring force surface method, brings different perspectives to the dynamics. Specifically, the structure is shown to exhibit particularly interesting nonlinear behaviors, including jumps, modal interactions, force relaxation and chattering during impacts on the mechanical stops. [less ▲]

Detailed reference viewed: 45 (16 ULg)