References of "Jehin, Emmanuel"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA seven-planet resonant chain in TRAPPIST-1
Luger, Rodrigo; Sestovic, Marko; Kruse, Ethan et al

in Nature Astronomy (2017), 1

The TRAPPIST-1 system is the first transiting planet system found orbiting an ultracool dwarf star[SUP] 1 [/SUP]. At least seven planets similar in radius to Earth were previously found to transit this ... [more ▼]

The TRAPPIST-1 system is the first transiting planet system found orbiting an ultracool dwarf star[SUP] 1 [/SUP]. At least seven planets similar in radius to Earth were previously found to transit this host star[SUP] 2 [/SUP]. Subsequently, TRAPPIST-1 was observed as part of the K2 mission and, with these new data, we report the measurement of an 18.77 day orbital period for the outermost transiting planet, TRAPPIST-1 h, which was previously unconstrained. This value matches our theoretical expectations based on Laplace relations[SUP] 3 [/SUP] and places TRAPPIST-1 h as the seventh member of a complex chain, with three-body resonances linking every member. We find that TRAPPIST-1 h has a radius of 0.752 R [SUB]⊕[/SUB] and an equilibrium temperature of 173 K. We have also measured the rotational period of the star to be 3.3 days and detected a number of flares consistent with a low-activity, middle-aged, late M dwarf. [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailThe 67P/Churyumov-Gerasimenko observation campaign in support of the Rosetta mission
Snodgrass, C.; A'Hearn, M. F.; Aceituno, F. et al

in Philosophical Transactions of the Royal Society of London Series A (2017), 375

We present a summary of the campaign of remote observations that supported the European Space Agency's Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/Churyumov-Gerasimenko ... [more ▼]

We present a summary of the campaign of remote observations that supported the European Space Agency's Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/Churyumov-Gerasimenko from before Rosetta's arrival until nearly the end of the mission in September 2016. These provided essential data for mission planning, large-scale context information for the coma and tails beyond the spacecraft and a way to directly compare 67P with other comets. The observations revealed 67P to be a relatively `well-behaved' comet, typical of Jupiter family comets and with activity patterns that repeat from orbit to orbit. Comparison between this large collection of telescopic observations and the in situ results from Rosetta will allow us to better understand comet coma chemistry and structure. This work is just beginning as the mission ends-in this paper, we present a summary of the ground-based observations and early results, and point to many questions that will be addressed in future studies. This article is part of the themed issue 'Cometary science after Rosetta'. [less ▲]

Detailed reference viewed: 19 (0 ULg)
Full Text
Peer Reviewed
See detail3D shape of asteroid (6)~Hebe from VLT/SPHERE imaging: Implications for the origin of ordinary H chondrites
Marsset, M.; Carry, B.; Dumas, C. et al

E-print/Working paper (2017)

Context. The high-angular-resolution capability of the new-generation ground-based adaptive-optics camera SPHERE at ESO VLT allows us to assess, for the very first time, the cratering record of medium ... [more ▼]

Context. The high-angular-resolution capability of the new-generation ground-based adaptive-optics camera SPHERE at ESO VLT allows us to assess, for the very first time, the cratering record of medium-sized (D~100-200 km) asteroids from the ground, opening the prospect of a new era of investigation of the asteroid belt's collisional history. Aims. We investigate here the collisional history of asteroid (6) Hebe and challenge the idea that Hebe may be the parent body of ordinary H chondrites, the most common type of meteorites found on Earth (~34% of the falls). Methods. We observed Hebe with SPHERE as part of the science verification of the instrument. Combined with earlier adaptive-optics images and optical light curves, we model the spin and three-dimensional (3D) shape of Hebe and check the consistency of the derived model against available stellar occultations and thermal measurements. Results. Our 3D shape model fits the images with sub-pixel residuals and the light curves to 0.02 mag. The rotation period (7.274 47 h), spin (343 deg,+47 deg), and volume-equivalent diameter (193 +/- 6km) are consistent with previous determinations and thermophysical modeling. Hebe's inferred density is 3.48 +/- 0.64 g.cm-3 , in agreement with an intact interior based on its H-chondrite composition. Using the 3D shape model to derive the volume of the largest depression (likely impact crater), it appears that the latter is significantly smaller than the total volume of close-by S-type H-chondrite-like asteroid families. Conclusions. Our results imply that (6) Hebe is not the most likely source of H chondrites. Over the coming years, our team will collect similar high-precision shape measurements with VLT/SPHERE for ~40 asteroids covering the main compositional classes, thus providing an unprecedented dataset to investigate the origin and collisional evolution of the asteroid belt. [less ▲]

Detailed reference viewed: 2 (1 ULg)
Full Text
Peer Reviewed
See detailStudy of the plutino object (208996) 2003 AZ84 from stellar occultations: size, shape and topographic features
Dias-Oliveira, A.; Sicardy, B.; Ortiz, J. L. et al

in The Astronomical Journal (2017), 154(1), 13

We present results derived from four stellar occultations by the plutino object (208996) 2003~AZ$_{84}$, detected at January 8, 2011 (single-chord event), February 3, 2012 (multi-chord), December 2, 2013 ... [more ▼]

We present results derived from four stellar occultations by the plutino object (208996) 2003~AZ$_{84}$, detected at January 8, 2011 (single-chord event), February 3, 2012 (multi-chord), December 2, 2013 (single-chord) and November 15, 2014 (multi-chord). Our observations rule out an oblate spheroid solution for 2003~AZ$_{84}$'s shape. Instead, assuming hydrostatic equilibrium, we find that a Jacobi triaxial solution with semi axes $(470 \pm 20) \times (383 \pm 10) \times (245 \pm 8)$~km % axis ratios $b/a= 0.82 \pm 0.05$ and $c/a= 0.52 \pm 0.02$, can better account for all our occultation observations. Combining these dimensions with the rotation period of the body (6.75~h) and the amplitude of its rotation light curve, we derive a density $\rho=0.87 \pm 0.01$~g~cm$^{-3}$ a geometric albedo $p_V= 0.097 \pm 0.009$. A grazing chord observed during the 2014 occultation reveals a topographic feature along 2003~AZ$_{84}$'s limb, that can be interpreted as an abrupt chasm of width $\sim 23$~km and depth $> 8$~km or a smooth depression of width $\sim 80$~km and depth $\sim 13$~km (or an intermediate feature between those two extremes). [less ▲]

Detailed reference viewed: 4 (1 ULg)
Full Text
Peer Reviewed
See detailPeculiar architectures for the WASP-53 and WASP-81 planet-hosting systems★
Triaud, Amaury H. M. J.; Neveu-VanMalle, Marion; Lendl, Monika et al

in Monthly Notices of the Royal Astronomical Society (2017), 467

We report the detection of two new systems containing transiting planets. Both were identified by WASP as worthy transiting planet candidates. Radial velocity observations quickly verified that the ... [more ▼]

We report the detection of two new systems containing transiting planets. Both were identified by WASP as worthy transiting planet candidates. Radial velocity observations quickly verified that the photometric signals were indeed produced by two transiting hot Jupiters. Our observations also show the presence of additional Doppler signals. In addition to short-period hot Jupiters, we find that the WASP-53 and WASP-81 systems also host brown dwarfs, on fairly eccentric orbits with semimajor axes of a few astronomical units. WASP-53c is over 16 M[SUB]Jup[/SUB]sin i[SUB]c[/SUB] and WASP-81c is 57 M[SUB]Jup[/SUB]sin i[SUB]c[/SUB]. The presence of these tight, massive companions restricts theories of how the inner planets were assembled. We propose two alternative interpretations: the formation of the hot Jupiters within the snow line or the late dynamical arrival of the brown dwarfs after disc dispersal. We also attempted to measure the Rossiter-McLaughlin effect for both hot Jupiters. In the case of WASP-81b, we fail to detect a signal. For WASP-53b, we find that the planet is aligned with respect to the stellar spin axis. In addition we explore the prospect of transit-timing variations, and of using Gaia's astrometry to measure the true masses of both brown dwarfs and also their relative inclination with respect to the inner transiting hot Jupiters. [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailWASP-167b/KELT-13b: Joint discovery of a hot Jupiter transiting a rapidly-rotating F1V star
Temple, L. Y.; Hellier, C.; Albrow, M. D. et al

in ArXiv e-prints (2017), 1704

We report the joint WASP/KELT discovery of WASP-167b/KELT-13b, a transiting hot Jupiter with a 2.02-d orbit around a $V$ = 10.5, F1V star with [Fe/H] = 0.1 $\pm$ 0.1. The 1.5 R$_{\rm Jup}$ planet was ... [more ▼]

We report the joint WASP/KELT discovery of WASP-167b/KELT-13b, a transiting hot Jupiter with a 2.02-d orbit around a $V$ = 10.5, F1V star with [Fe/H] = 0.1 $\pm$ 0.1. The 1.5 R$_{\rm Jup}$ planet was confirmed by Doppler tomography of the stellar line profiles during transit. We place a limit of $<$ 8 M$_{\rm Jup}$ on its mass. The planet is in a retrograde orbit with a sky-projected spin-orbit angle of $\lambda = -165^{\circ} \pm 5^{\circ}$. This is in agreement with the known tendency for orbits around hotter stars to be more likely to be misaligned. WASP-167/KELT-13 is one of the few systems where the stellar rotation period is less than the planetary orbital period. We find evidence of non-radial stellar pulsations in the host star, making it a $\delta$-Scuti or $\gamma$-Dor variable. The similarity to WASP-33, a previously known hot-Jupiter host with pulsations, adds to the suggestion that close-in planets might be able to excite stellar pulsations. [less ▲]

Detailed reference viewed: 7 (4 ULg)
Full Text
Peer Reviewed
See detailReconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α line
Bourrier, V.; Ehrenreich, D.; Wheatley, P. J. et al

in Astronomy and Astrophysics (2017), 599

The TRAPPIST-1 system offers the opportunity to characterize terrestrial, potentially habitable planets orbiting a nearby ultracool dwarf star. We performed a four-orbit reconnaissance with the Space ... [more ▼]

The TRAPPIST-1 system offers the opportunity to characterize terrestrial, potentially habitable planets orbiting a nearby ultracool dwarf star. We performed a four-orbit reconnaissance with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope to study the stellar emission at Lyman-α, to assess the presence of hydrogen exospheres around the two inner planets, and to determine their UV irradiation. We detect the Lyman-α line of TRAPPIST-1, making it the coldest exoplanet host star for which this line has been measured. We reconstruct the intrinsic line profile, showing that it lacks broad wings and is much fainter than expected from the stellar X-ray emission. TRAPPIST-1 has a similar X-ray emission as Proxima Cen but a much lower Ly-α emission. This suggests that TRAPPIST-1 chromosphere is only moderately active compared to its transition region and corona. We estimated the atmospheric mass loss rates for all planets, and found that despite a moderate extreme UV emission the total XUV irradiation could be strong enough to strip the atmospheres of the inner planets in a few billions years. We detect marginal flux decreases at the times of TRAPPIST-1b and c transits, which might originate from stellar activity, but could also hint at the presence of extended hydrogen exospheres. Understanding the origin of these Lyman-α variations will be crucial in assessing the atmospheric stability and potential habitability of the TRAPPIST-1 planets. [less ▲]

Detailed reference viewed: 13 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-South transiting exoplanets: WASP-130b, WASP-131b, WASP-132b, WASP-139b, WASP-140b, WASP-141b & WASP-142b
Hellier, Coel; Anderson, D. R.; Collier Cameron, A. et al

in Monthly Notices of the Royal Astronomical Society (2017), 465

We describe seven new exoplanets transiting stars of V = 10.1 to 12.4. WASP-130b is a "warm Jupiter" having an orbital period of 11.6 d, the longest yet found by WASP. It transits a V = 11.1, G6 star with ... [more ▼]

We describe seven new exoplanets transiting stars of V = 10.1 to 12.4. WASP-130b is a "warm Jupiter" having an orbital period of 11.6 d, the longest yet found by WASP. It transits a V = 11.1, G6 star with [Fe/H] = +0.26. Warm Jupiters tend to have smaller radii than hot Jupiters, and WASP-130b is in line with this trend (1.23 Mjup; 0.89 Rjup). WASP-131b is a bloated Saturn-mass planet (0.27 Mjup; 1.22 Rjup). Its large scale height coupled with the V = 10.1 brightness of its host star make the planet a good target for atmospheric characterisation. WASP-132b is among the least irradiated and coolest of WASP planets, being in a 7.1-d orbit around a K4 star. It has a low mass and a modest radius (0.41 Mjup; 0.87 Rjup). The V = 12.4, [Fe/H] = +0.22 star shows a possible rotational modulation at 33 d. WASP-139b is the lowest-mass planet yet found by WASP, at 0.12 Mjup and 0.80 Rjup. It is a "super-Neptune" akin to HATS-7b and HATS-8b. It orbits a V = 12.4, [Fe/H] = +0.20, K0 star. The star appears to be anomalously dense, akin to HAT-P-11. WASP-140b is a 2.4-Mjup planet in a 2.2-d orbit that is both eccentric (e = 0.047) and with a grazing transit (b = 0.93) The timescale for tidal circularisation is likely to be the lowest of all known eccentric hot Jupiters. The planet's radius is large (1.4 Rjup), but uncertain owing to the grazing transit. The host star is a V = 11.1, [Fe/H] = +0.12, K0 dwarf showing a prominent 10.4-d rotational modulation. The dynamics of this system are worthy of further investigation. WASP-141b is a typical hot Jupiter, being a 2.7 Mjup, 1.2 Rjup planet in a 3.3-d orbit around a V = 12.4, [Fe/H] = +0.29, F9 star. WASP-142b is a typical bloated hot Jupiter (0.84 Mjup, 1.53 Rjup) in a 2.1-d orbit around a V = 12.3, [Fe/H] = +0.26, F8 star. [less ▲]

Detailed reference viewed: 132 (6 ULg)
Full Text
Peer Reviewed
See detailSeven temperate terrestrial planets around the nearby ultracool dwarf star
Gillon, Michaël ULg; Triaud, Amaury; Demory, Brice-Olivier et al

in Nature (2017), 542

One focus of modern astronomy is to detect temperate terrestrial exoplanets well-suited for atmospheric characterisation. A milestone was recently achieved with the detection of three Earth-sized planets ... [more ▼]

One focus of modern astronomy is to detect temperate terrestrial exoplanets well-suited for atmospheric characterisation. A milestone was recently achieved with the detection of three Earth-sized planets transiting (i.e. passing in front of) a star just 8% the mass of the Sun 12 parsecs away. Indeed, the transiting configuration of these planets combined with the Jupiter-like size of their host star - named TRAPPIST-1 - makes possible indepth studies of their atmospheric properties with current and future astronomical facilities. Here we report the results of an intensive photometric monitoring campaign of that star from the ground and with the Spitzer Space Telescope. Our observations reveal that at least seven planets with sizes and masses similar to the Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.21, 12.35 days) are near ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inward. The seven planets have equilibrium temperatures low enough to make possible liquid water on their surfaces. [less ▲]

Detailed reference viewed: 163 (27 ULg)
Full Text
Peer Reviewed
See detailWASP-92b, WASP-93b and WASP-118b: Three new transiting close-in giant planets
Hay, K. L.; Collier-Cameron, A.; Doyle, A. P. et al

in Monthly Notices of the Royal Astronomical Society (2016), 463

We present the discovery of three new transiting giant planets, first detected with the WASP telescopes, and establish their planetary nature with follow up spectroscopy and ground-based photometric ... [more ▼]

We present the discovery of three new transiting giant planets, first detected with the WASP telescopes, and establish their planetary nature with follow up spectroscopy and ground-based photometric lightcurves. WASP-92 is an F7 star, with a moderately inflated planet orbiting with a period of 2.17 days, which has R[SUB]p[/SUB] = 1.461 ± 0.077R[SUB]J[/SUB] and M[SUB]p[/SUB] = 0.805 ± 0.068M[SUB]J[/SUB]. WASP-93b orbits its F4 host star every 2.73 days and has R[SUB]p[/SUB] = 1.597 ± 0.077R[SUB]J[/SUB] and M[SUB]p[/SUB] = 1.47 ± 0.029M[SUB]J[/SUB]. WASP-118b also has a hot host star (F6) and is moderately inflated, where R[SUB]p[/SUB] = 1.440 ± 0.036R[SUB]J[/SUB] and M[SUB]p[/SUB] = 0.514 ± 0.020M[SUB]J[/SUB] and the planet has an orbital period of 4.05 days. They are bright targets (V = 13.18, 10.97 and 11.07 respectively) ideal for further characterisation work, particularly WASP-118b, which is being observed by K2 as part of campaign 8. The WASP-93 system has sufficient angular momentum to be tidally migrating outwards if the system is near spin-orbit alignment, which is divergent from the tidal behaviour of the majority of hot Jupiters discovered. [less ▲]

Detailed reference viewed: 40 (6 ULg)
Full Text
Peer Reviewed
See detailWASP-157b, a Transiting Hot Jupiter Observed with K2
Močnik, T.; Anderson, D. R.; Brown, D. J. A. et al

in Publications of the Astronomical Society of the Pacific (2016), 970

We announce the discovery of the transiting hot Jupiter WASP-157b in a 3.95-d orbit around a V = 12.9 G2 main-sequence star. This moderately inflated planet has a Saturn-like density with a mass of $0.57 ... [more ▼]

We announce the discovery of the transiting hot Jupiter WASP-157b in a 3.95-d orbit around a V = 12.9 G2 main-sequence star. This moderately inflated planet has a Saturn-like density with a mass of $0.57 \pm 0.10$ M$_{\rm Jup}$ and a radius of $1.06 \pm 0.05$ R$_{\rm Jup}$. We do not detect any rotational or phase-curve modulations, nor the secondary eclipse, with conservative semi-amplitude upper limits of 250 and 20 ppm, respectively. [less ▲]

Detailed reference viewed: 42 (2 ULg)
Full Text
Peer Reviewed
See detailOrtho-to-para abundance ratios of NH2in 26 comets: implications for the real meaning of OPRs
Shinnaka, Yoshiharu; Kawakita, Hideyo; Jehin, Emmanuel ULg et al

in Monthly Notices of the Royal Astronomical Society (2016), 462

Abundance ratios of nuclear-spin isomers for cometary molecules having identical protons, such as water and ammonia, have been measured and discussed from the viewpoint that they are primordial characters ... [more ▼]

Abundance ratios of nuclear-spin isomers for cometary molecules having identical protons, such as water and ammonia, have been measured and discussed from the viewpoint that they are primordial characters in comet. In the case of ammonia, its ortho-to-para abundance ratio (OPR) is usually estimated from OPRs of NH2 because of difficulty in measuring OPR of ammonia directly. We report our survey for OPRs of NH2 in 26 comets. A weighted mean of ammonia OPRs for the comets is 1.12 ± 0.01 and no significant difference is found between the Oort Cloud comets and the Jupiter-family comets. These values correspond to ∼30 K as nuclear-spin temperatures. The OPRs of ammonia in comets probably reflect the physicochemical conditions in coma, rather than the conditions for the molecular formation or condensation in the pre-solar molecular cloud/the solar nebula, based on comparison of OPRs (and nuclear-spin temperatures) of ammonia with those of water, 14N/15N ratios in ammonia, and D/H ratios in water. The OPRs could be reset to a nuclear-spin weights ratio in solid phase and modified by interactions with protonated ions like H3O+, water clusters (H2O)n, ice grains, and paramagnetic impurities (such as O2 molecules and grains) in the inner coma gas. Relationship between the OPRs of ammonia and water is a clue to understanding the real meaning of the OPRs. [less ▲]

Detailed reference viewed: 19 (3 ULg)
Full Text
Peer Reviewed
See detailNitrogen isotopic ratios of NH 2 in comets: implication for 15 N-fractionation in cometary ammonia
Shinnaka, Yoshiharu; Kawakita, Hideyo; Jehin, Emmanuel ULg et al

in Monthly Notices of the Royal Astronomical Society (2016), 462

The isotopic ratios are diagnostics for the physico-chemical conditions governing molecular formation. In comets, 14N/15N ratios have been measured from HCN in three comets and from CN in more than 20 ... [more ▼]

The isotopic ratios are diagnostics for the physico-chemical conditions governing molecular formation. In comets, 14N/15N ratios have been measured from HCN in three comets and from CN in more than 20 comets. Those ratios are enriched in 15N compared to the Sun by a factor of ∼3, have a small diversity and do not depend on the dynamical type of the comets. The origin of this high 15N-fractionation is still in debate because CN probably comes not only from HCN, but also from other materials (such as polymers or organic dusts) in the coma. Consequently, an interpretation of the isotopic ratios in cometary CN is quite complicated due to the multiple possible parents of CN. In contrast with CN, the isotopic ratios of nitrogen in NH3 give us a much clearer interpretation than in CN because NH3 is directly incorporated in the nuclear ices. To estimate the 14N/15N ratios in NH3, 14N/15N ratios have been determined from high-resolution spectra of NH2 in the optical wavelength region. NH2 is indeed a dominant photodissociation product of NH3. Those ratios were also found to be enriched in 15N compared to the Sun by a factor of ∼3. In this paper, we present 14N/15N ratios in NH2 for an additional sample of 16 comets. Our sample includes short-period comets as well as long-period comets. We found that the 14N/15N ratios in cometary NH2 also show a small dispersion and do not depend on the dynamical origin of the comets. [less ▲]

Detailed reference viewed: 17 (4 ULg)
Full Text
See detailVLT/SPHERE observations and shape reconstruction of asteroid (6) Hebe
Marsset, Michael; Carry, Benoit; Dumas, Christophe et al

in AAS/Division for Planetary Sciences Meeting Abstracts (2016, October 01)

(6) Hebe is a large main-belt asteroid, accounting for about half a percent of the mass of the asteroid belt. Its spectral characteristics and close proximity to dynamical resonances within the main-belt ... [more ▼]

(6) Hebe is a large main-belt asteroid, accounting for about half a percent of the mass of the asteroid belt. Its spectral characteristics and close proximity to dynamical resonances within the main-belt (the 3:1 Kirkwood gap and the nu6 resonance) make it a probable parent body of the H-chondrites and IIE iron meteorites found on Earth.We present new AO images of Hebe obtained with the high-contrast imager SPHERE (Beuzit et al. 2008) as part of the science verification of the instrument. Hebe was observed close to its opposition date and throughout its rotation in order to derive its 3-D shape, and to allow a study of its surface craters. Our observations reveal impact zones that witness a severe collisional disruption for this asteroid. When combined to previous AO images and available lightcurves (both from the literature and from recent optical observations by our team), these new observations allow us to derive a reliable shape model using our KOALA algorithm (Carry et al. 2010). We further derive an estimate of Hebe's density based on its known astrometric mass. [less ▲]

Detailed reference viewed: 30 (1 ULg)
Full Text
See detailCharacterization of the high-albedo NEA 3691 Bede
Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel ULg et al

in AAS/Division for Planetary Sciences Meeting Abstracts (2016, October 01)

Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric ... [more ▼]

Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter.Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011).Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv≈0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface roughness, which in turn affect diameter and pv. Surface composition can be related to pv. This study focuses on understanding and characterizing the dependency of parameters with the aim of constraining diameter, pv and thermal inertia for 3691 Bede. [less ▲]

Detailed reference viewed: 23 (1 ULg)
Full Text
See detailDiscovery of temperate Earth-sized planets transiting a nearby ultracool dwarf star
Jehin, Emmanuel ULg; Gillon, Michaël ULg; Lederer, Susan M. et al

in AAS/Division for Planetary Sciences Meeting Abstracts (2016, October 01)

We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is ... [more ▼]

We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is an isolated M8.0±0.5-type dwarf star at a distance of 12.0±0.4 parsecs as measured by its trigonometric parallax, with an age constrained to be > 500 Myr, and with a luminosity, mass, and radius of 0.05%, 8% and 11.5% those of the Sun, respectively. The small size of the host star, only slightly larger than Jupiter, translates into Earth-like radii for the three discovered planets, as deduced from their transit depths. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Several orbits remain possible for the third planet based on our current data. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system. [less ▲]

Detailed reference viewed: 73 (5 ULg)
Full Text
See detail2003 AZ84: Size, shape, albedo and first detection of topographic features
Dias-Oliveira, Alex; Sicardy, Bruno; Ortiz, Jose-Luis et al

in AAS/Division for Planetary Sciences Meeting Abstracts (2016, October 01)

We analyze two multi-chord stellar occultations by the Trans-Neptunian Object (TNO) 2003 AZ84 observed on February 3, 2012 and November 15, 2014.They provide different elliptical limb fits that are ... [more ▼]

We analyze two multi-chord stellar occultations by the Trans-Neptunian Object (TNO) 2003 AZ84 observed on February 3, 2012 and November 15, 2014.They provide different elliptical limb fits that are consistent to within their respective error bars, but could also suggest a possible precession of the object (assumed here to be a Maclaurin spheroid). The derived equatorial radius and oblateness are R[SUB]e[/SUB] = 393 ± 7 km and ɛ = 0.057 in 2014 and R[SUB]e[/SUB] = 414 ± 13 km and ɛ = 0.165 in 2012, respectively. Those results are consistent with single-chord events observed in January 2011 and December 2013. The figures above provide geometric visual albedos of p[SUB]V(2014)[/SUB] = 0.112 ± 0.008 and p[SUB]V(2012)[/SUB] = 0.114 ± 0.020. Using the Maclaurin assumption, combined with possible rotational periods of 6.67 h and 10.56 h, we estimate density upper limits of 1.89 ± 0.16g/cm[SUP]3[/SUP] and 0.77 ± 0.07g/cm[SUP]3[/SUP] for the two dates, respectively.The 2014 event provides (for the first time during a TNO occultation) a grazing chord with a gradual disappearance of the star behind 2003[SUB]AZ[/SUB]84's limb that lasts for more than 10 seconds. We rule out the possibility of a localized dust concentration as it would imply very high optical depth for that cloud. We favor a local topographic feature (chasm) with minimum width and depth of 22 ± 2.5 km and 7 ± 2.0 km, respectively. Features with similar depths are in fact observed on Pluto's main satellite, Charon, which has a radius of about 605 km, comparable to that of 2003[SUB]AZ[/SUB]84. [less ▲]

Detailed reference viewed: 43 (2 ULg)
Full Text
Peer Reviewed
See detailDiscovery of WASP-113b and WASP-114b, two inflated hot-Jupiters with contrasting densities
Barros, S. C. C.; Brown, D. J. A.; Hébrard, G. et al

in Astronomy and Astrophysics (2016), 593

We present the discovery and characterisation of the exoplanets WASP-113b and WASP-114b by the WASP survey, {\it SOPHIE} and {\it CORALIE}. The planetary nature of the systems was established by ... [more ▼]

We present the discovery and characterisation of the exoplanets WASP-113b and WASP-114b by the WASP survey, {\it SOPHIE} and {\it CORALIE}. The planetary nature of the systems was established by performing follow-up photometric and spectroscopic observations. The follow-up data were combined with the WASP-photometry and analysed with an MCMC code to obtain system parameters. The host stars WASP-113 and WASP-114 are very similar. They are both early G-type stars with an effective temperature of $\sim 5900\,$K, [Fe/H]$\sim 0.12$ and $T_{\rm eff}$ $\sim 4.1$dex. However, WASP-113 is older than WASP-114. Although the planetary companions have similar radii, WASP-114b is almost 4 times heavier than WASP-113b. WASP-113b has a mass of $0.48\,$ $\mathrm{M}_{\rm Jup}$ and an orbital period of $\sim 4.5\,$days; WASP-114b has a mass of $1.77\,$ $\mathrm{M}_{\rm Jup}$ and an orbital period of $\sim 1.5\,$days. Both planets have inflated radii, in particular WASP-113 with a radius anomaly of $\Re=0.35$. The high scale height of WASP-113b ($\sim 950$ km ) makes it a good target for follow-up atmospheric observations. [less ▲]

Detailed reference viewed: 25 (2 ULg)
Full Text
See detailSurvey for Ortho-to-Para Abundance Ratios (OPRs) of NH2 in Comets: Revisit to the Meaning of OPRs of Cometary Volatiles
Kawakita, Hideyo; Shinnaka, Yoshiharu; Jehin, Emmanuel ULg et al

in Bulletin of the American Astronomical Society (2016, October 01), 48

Since molecules having identical protons can be classified into nuclear-spin isomers (e.g., ortho-H[SUB]2[/SUB]O and para-H[SUB]2[/SUB]O for water) and their inter-conversions by radiative and non ... [more ▼]

Since molecules having identical protons can be classified into nuclear-spin isomers (e.g., ortho-H[SUB]2[/SUB]O and para-H[SUB]2[/SUB]O for water) and their inter-conversions by radiative and non-destructive collisional processes are believed to be very slow, the ortho-to-para abundance ratios (OPRs) of cometary volatiles such as H[SUB]2[/SUB]O, NH[SUB]3[/SUB] and CH[SUB]4[/SUB] in coma have been considered as primordial characters of cometary molecules [1]. Those ratios are usually interpreted as nuclear-spin temperatures although the real meaning of OPRs is in strong debate. Recent progress in laboratory studies about nuclear-spin conversion in gas- and solid-phases [2,3] revealed short-time nuclear-spin conversions for water, and we have to reconsider the interpretation for observed OPRs of cometary volatiles. We have already performed the survey for OPRs of NH[SUB]2[/SUB] in more than 20 comets by large aperture telescopes with high-resolution spectrographs (UVES/VLT, HDS/Subaru, etc.) in the optical wavelength region [4]. The observed OPRs of ammonia estimated from OPRs of NH[SUB]2[/SUB], cluster around ~1.1 (cf. 1.0 as a high-temperature limit), indicative of ~30 K as nuclear-spin temperatures. We present our latest results for OPRs of cometary NH[SUB]2[/SUB] and discuss about the real meaning of OPRs of cometary ammonia, in relation to OPRs of water in cometary coma. Chemical processes in the inner coma may play an important role to achieve un-equilibrated OPRs of cometary volatiles in coma.This work was financially supported by MEXT Supported Program for the Strategic Research Foundation at Private Universities, 2014–2018 (No. S1411028) (HK) and by Graint-in-Aid for JSPS Fellows, 15J10864 (YS).References:[1] Mumma & Charnley, 2011, Annu. Rev. Astro. Astrophys. 49, 471.[2] Hama & Watanabe, 2013, Chem. Rev. 113, 8783.[3] Hama et al., 2008, Science 351, 6268.[4] Shinnaka et al., 2011, ApJ 729, 81. [less ▲]

Detailed reference viewed: 15 (1 ULg)
Full Text
See detailThe OD/OH Isotope Ratio in Comets 8P/Tuttle and C/2012 F6 (Lemmon)
Rousselot, Philippe; Jehin, Emmanuel ULg; Hutsemekers, Damien ULg et al

in Bulletin of the American Astronomical Society (2016, October 01), 48

The determination of isotopic ratios in solar system objects is an important source of information about their origin, especially for comets. Among these ratios the D/H is of particular importance because ... [more ▼]

The determination of isotopic ratios in solar system objects is an important source of information about their origin, especially for comets. Among these ratios the D/H is of particular importance because of its sensitivity to fractionation processes and physical environment, and the abundance of hydrogen in the solar system. The main molecule used to derive this ratio in comets is water. So far, apart water, only HCN has permitted to derive D/H ratio and not only upper limits.Most of the existing determinations of D/H in water molecules have been obtained by spectroscopic observations of water lines in the sub-mm or near infrared range [1,2]. So far only one measurement has been based on OD/OH emission lines radicals in the near-UV [3] and another one on the Lyman-alpha D emission [4]. In situ measurements have also been obtained in comets 1P/Halley and 67P/Churyumov-Gerasimenko using mass spectrometer [5,6,7,8].In this work we have used the OH and OD ultraviolet bands at 310 nm observed with the ESO 8-m Very Large Telescope feeding the Ultraviolet-Visual Echelle Spectrograph (UVES) for measuring the D/H ratio in comets 8P/Tuttle and C/2012 F6 (Lemmon). The OH and OD being the photodissociation products of H[SUB]2[/SUB]O and HDO such observations allow to derive D/H ratio for water molecules. This work constitutes an independant determination of the D/H ratios already published for these comets and based on observations performed in the sub-mm and near infrared range of H[SUB]2[/SUB]O and HDO lines. We present our modeling, data analysis and numerical values obtained for this ratio.[1] D. Bockelée-Morvan et al., 2015, SSR 197, 47-83 [2] N. Biver et al., 2016, A&A 589, id A78, 11p [3] D. Hutsemékers et al., 2008, A&A 490, L31 [4] H.A. Weaver et al., 2008, LPI Contributions 1405, 8216 [5] H. Balsiger, K. Altwegg, J. Geiss, 1995, JGR 100, 5827 [6] P. Eberhardt et al., 1995, A&A 302, 301 [7] R.H. Brown et al., 2012, PSS 60, 166 [8] K. Alwegg et al., 2015, Science 347, article id. 1261952 [less ▲]

Detailed reference viewed: 26 (2 ULg)