References of "Jacquemin, Ingrid"
     in
Bookmark and Share    
Full Text
See detailCARAIB USER'S GUIDE
Minet, Julien ULg; Jacquemin, Ingrid ULg; François, Louis ULg

Learning material (2013)

Detailed reference viewed: 33 (17 ULg)
Full Text
Peer Reviewed
See detailTowards Participatory Integrated Valuation and Modelling of Ecosystem Services under Land-use Change
Fontaine, C.; Dendoncker, N.; De Vreese, R. et al

in Journal of Land Use Science (2013)

The lack of consideration for Ecosystem Services (ES) values in current decision-making is recognised as one of the main reasons leading to an intense competition and arguably unsustainable use of well ... [more ▼]

The lack of consideration for Ecosystem Services (ES) values in current decision-making is recognised as one of the main reasons leading to an intense competition and arguably unsustainable use of well-located available land. In this paper, we present a framework for the Valuation Of Terrestrial Ecosystem Services (VOTES), aiming at structuring a methodology that is applicable for valuing ES in a given area through a set of indicators that are both meaningful for local actors and scientifically constructed. Examples from a case study area in central Belgium are used to illustrate the methodology: a stepwise procedure starting with the valuation of ES at present. The valuation of the social, biophysical and economic dimensions of ES are based on current land-use patterns. Subsequently, scenarios of land-use change are used to explore potential losses (and/or gains) of ES in the future of the study area. With the VOTES framework, we aim at [1] incorporating stakeholders inputs to widen the valuation process and increase trust in policy-oriented approach; [2] integrating valuation of ES with a sustainable development stance accounting for land-use change; and [3] developing suggestions to policy-makers for integrating ES monitoring in policy developments. [less ▲]

Detailed reference viewed: 60 (29 ULg)
Full Text
Peer Reviewed
See detailPaleoproductivity during the middle Miocene carbon isotope events: A data-model approach
Diester-Haass, Liselotte; Billups, Katharina; Jacquemin, Ingrid ULg et al

in Paleoceanography (2013), 28

To what extent are individual middle Miocene eccentricity-scale benthic foraminiferal carbon isotope maxima (the so-called CM events) related to changes in marine export productivity? Here we use benthic ... [more ▼]

To what extent are individual middle Miocene eccentricity-scale benthic foraminiferal carbon isotope maxima (the so-called CM events) related to changes in marine export productivity? Here we use benthic foraminiferal accumulation rates from three sites in the Pacific and Southern Oceans and a geochemical box model to assess relationships between benthic foraminiferal δ13C records, export productivity, and the global carbon cycle. Results from Deep Sea Drilling Project Hole 588 and Ocean Drilling Program Site 747 show a distinct productivity maximum during CM 6 at 13.8 Ma, the time of major expansion of ice on Antarctica. Productivity maxima during other CM events are only recorded at high-latitude Site 747. A set of numerical experiments tests whether changes in foraminiferal δ13C records (CM events) and export productivity can be simulated solely by sea level fluctuations and the associated changes in global weathering-deposition cycles, by sea level fluctuations plus global climatic cooling, and by sea level fluctuations plus invigorated ocean circulation. Consistent with data, the periodic forcing of sea level and albedo (and associated weathering cycles) produces δ13C variations of the correct temporal spacing, albeit with a reduced amplitude. A productivity response of the correct magnitude is achieved by enhancing ocean circulation during cold periods. We suggest that the pacing of middle Miocene δ13C fluctuations is associated with cyclical sea level variations. The amplitude, however, is muted perhaps due to the competing effects of a time-lagged response to sea level lowstands but an immediate response to invigorated ocean circulation during cold phases. [less ▲]

Detailed reference viewed: 18 (7 ULg)
See detailModelling the risk of ecosystem disruption in Europe with a dynamic vegetation model
Dury, Marie ULg; Hambuckers, Alain ULg; Warnant, Pierre et al

Conference (2012, April)

What will be the European ecosystem responses to future climate? With unprecedented speed and extent, the projected climate change might lead to a disruption of terrestrial plants functioning in many ... [more ▼]

What will be the European ecosystem responses to future climate? With unprecedented speed and extent, the projected climate change might lead to a disruption of terrestrial plants functioning in many regions. In the framework of the EcoChange project, transient projections over the 1901-2100 period have been performed with a process-based dynamic vegetation model, CARAIB DVM (Dury et al., 2011, iForest 4: 82, 99). The vegetation model was driven by the outputs of four climate models under the SRES A1B scenario: the ARPEGE/Climate model and three regional climate models (KNMI-RACMO2 , DMI-HIRHAM5 and HC-HadRM3Q0 RCMs) from the European Union project ENSEMBLES. DVMs are appropriate tools to apprehend potential climate change impacts on ecosystems and identify threatened regions over Europe. CARAIB outputs (soil moisture, runoff, net primary productivity, fire, etc.) were used to characterize the ecosystem evolution. To assess consequences on biodiversity, the evolution of 100 natural common European species (47 herbs, 12 shrubs and 41 trees) has been studied year-to-year over the 1901-2100 period. Under the combined effects of projected changes particularly in temperature and precipitations, CARAIB simulates important reductions in the annual soil water content. The species productivities vary strongly from year to year reaching during the driest years values much lower than present-day average productivity. According to CARAIB, a lot of species might go beyond their water tolerance very frequently, particularly after 2050, due to more intense summer droughts. In the northern part of Europe and in the Alps, with reduced temperature variability and positive soil water anomalies, NPP variability tends to decrease. Regions with more severe droughts might also be affected by an increase of the frequency and intensity of wildfires. With this background, the species distributions might be strongly modified. 15% of tree species and 30% of herb and shrub species (respectively 30% and 60% if the CO2 fertilization effect on species is not taken into account) might experience a loss of 30% or more of their current distribution. Proportions of new species appearance at the end of the century were also studied. Southern Europe might suffer important species extinction while the more suitable climate conditions in northern Europe might lead to a gain in species diversity. [less ▲]

Detailed reference viewed: 27 (9 ULg)