References of "Gridelet, Virginie"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe endocrine milieu and CD4 T-lymphocyte polarization during pregnancy
Polese, Barbara ULg; Gridelet, Virginie ULg; Arakioti, Eleni et al

in Frontiers in Endocrinology (2014), 5(Article 106), 1-11

Acceptance of the fetal semi-allograft by the mother’s immune system has become the focus of intensive research. CD4+ T cells are important actors in the establishment of pregnancy. Th1/Th2 paradigm has ... [more ▼]

Acceptance of the fetal semi-allograft by the mother’s immune system has become the focus of intensive research. CD4+ T cells are important actors in the establishment of pregnancy. Th1/Th2 paradigm has been expanded to include CD4+ regulatory T (Treg) and T helper 17 (Th17) cells. Pregnancy hormones exert very significant modulatory properties on the maternal immune system. In this review, we describe mechanisms by which the endocrine milieu modulates CD4 T cell polarization during pregnancy. We first focused on Treg and Th17 cells and on their importance for pregnancy. Secondly, we review the effects of pregnancy hormones [progesterone (P4) and estradiol (E2)] on immune cells previously described, with a particular attention to human chorionic gonadotropin (hCG). The importance of Treg cells for pregnancy is evidenced. They are recruited before implantation and are essential for pregnancy maintenance. Decreased number or less efficient Treg cells are implicated in fertility disorders. As for Th17 cells, the few available studies suggest that they have a negative impact on fertility. Th17 frequency is increased in infertile patients. With the combination of its pro-effects on Th2 and Treg cells and anti-effects on Th1 and Th17 cells, P4 contributes to establishment of a favorable environment for pregnancy. E2 effects are more dependent on the context but it seems that E2 promotes Treg and Th2 cells while it inhibits Th1 cells. hCG positively influences activities of Treg and uterine natural killer cells. This embryo signal is an essential actor for the success of pregnancy, both as the endocrine factor regulating P4 secretion by the ovarian corpus luteum, but also as a paracrine agent during implantation as well as an angiogenic and immunologic mediator during the course of gestation. Luteinizing hormone (LH) immune properties begin to be studied but its positive impact on Treg cells suggests that LH could be a considerable immunomodulator in the mouse. [less ▲]

Detailed reference viewed: 7 (2 ULg)
Full Text
Peer Reviewed
See detailEvidence for cross-talk between the LH receptor and LH during implantation in mice
Gridelet, Virginie ULg; Tsampalas, Marie; Berndt, Sarah et al

in Reproduction, Fertility and Development (2013), 25

The present study investigated the first interaction that occurs between the blastocyst and endometrium during implantation. Given the ethical objections to studying implantation in humans, a mouse model ... [more ▼]

The present study investigated the first interaction that occurs between the blastocyst and endometrium during implantation. Given the ethical objections to studying implantation in humans, a mouse model was used to study the dialogue between luteinising hormone (LH) and luteinising hormone receptor (LHCGR). Several studies performed on LHCGR-knockout mice have generated controversy regarding the importance of the dialogue between LH and LHCGR during implantation. There has been no demonstration of a bioactive LH-like signal produced by the murine blastocyst. The first aim of the present study was to examine and quantify, using radioimmunoassay, the generation of a bioactive LH signal by the murine blastocyst. We went on to examine and quantify endometrial Lhcgr expression to validate the mouse model. Expression of LHCGR in mouse uteri was demonstrated using immunohistochemistry and western blot analysis. To quantify the expression of Lh in the mouse blastocyst and Lhcgr in the endometrium, reverse transcription–polymerase chain reaction (RT-PCR) and real-time quantitative (q) RT-PCR were performed. The results demonstrate that Lhcgr expression in BALB/c mouse endometrial epithelium is increased at the time of implantation and indicate that LHCGR may contribute to the implantation process. In support of this hypothesis, we identified a bioactive LH signal at the time of murine blastocyst implantation. [less ▲]

Detailed reference viewed: 20 (8 ULg)
Full Text
Peer Reviewed
See detailImpact of follicular G-CSF quantification on subsequent embryo transfer decisions: a proof of concept study.
Ledee, N.; Gridelet, Virginie ULg; RAVET, Stéphanie ULg et al

in Human Reproduction (2013), 28(2), 406-13

BACKGROUND: Previous experiments have shown that granulocyte colony-stimulating factor (G-CSF), quantified in the follicular fluid (FF) of individual oocytes, correlates with the potential for an ongoing ... [more ▼]

BACKGROUND: Previous experiments have shown that granulocyte colony-stimulating factor (G-CSF), quantified in the follicular fluid (FF) of individual oocytes, correlates with the potential for an ongoing pregnancy of the corresponding fertilized oocytes among selected transferred embryos. Here we present a proof of concept study aimed at evaluating the impact of including FF G-CSF quantification in the embryo transfer decisions. METHODS: FF G-CSF was quantified with the Luminex XMap technology in 523 individual FF samples corresponding to 116 fresh transferred embryos, 275 frozen embryos and 131 destroyed embryos from 78 patients undergoing ICSI. RESULTS: Follicular G-CSF was highly predictive of subsequent implantation. The receiving operator characteristics curve methodology showed its higher discriminatory power to predict ongoing pregnancy in multivariate logistic regression analysis for FF G-CSF compared with embryo morphology [0.77 (0.69-0.83), P < 0.001 versus 0.66 (0.58-0.73), P = 0.01)]. Embryos were classified by their FF G-CSF concentration: Class I over 30 pg/ml (a highest positive predictive value for implantation), Class II from 30 to 18.4 pg/ml and Class III <18.4 pg/ml (a highest negative predictive value). Embryos derived from Class I follicles had a significantly higher implantation rate (IR) than those from Class II and III follicles (36 versus 16.6 and 6%, P < 0.001). Embryos derived from Class I follicles with an optimal morphology reached an IR of 54%. Frozen-thawed embryos transfer derived from Class I follicles had an IR of 37% significantly higher than those from Class II and III follicles, respectively, of 8 and 5% (P < 0.001). Thirty-five per cent of the frozen embryos but also 10% of the destroyed embryos were derived from G-CSF Class I follicles. Non-optimal embryos appear to have been transferred in 28% (22/78) of the women, and their pregnancy rate was significantly lower than that of women who received at least one optimal embryo (18 versus 36%, P = 0.04). CONCLUSIONS: Monitoring FF G-CSF for the selection of embryos with a better potential for pregnancy might improve the effectiveness of IVF by reducing the time and cost required for obtaining a pregnancy. [less ▲]

Detailed reference viewed: 18 (4 ULg)
Full Text
Peer Reviewed
See detailThe actors of human implantation: gametes, embryo and endometrium
Gridelet, Virginie ULg; GASPARD, Olivier ULg; Polese, Barbara ULg et al

in Violin Pereira, Luis Antonio (Ed.) Embryology - Updates and Highlights on Classic Topics (2012)

Detailed reference viewed: 27 (7 ULg)
Full Text
Peer Reviewed
See detailHuman Chorionic Gonadotropin: a hormone with immunological and angiogenic properties.
Tsampalas, M.; Gridelet, Virginie ULg; Berndt, Sarah ULg et al

in Journal of Reproductive Immunology (2010), 85(1), 93-8

The success of implantation depends on a receptive endometrium, a normal blastocyst and synchronized cross-talk at the maternal–fetal interface. The progression of pregnancy then requires immunological ... [more ▼]

The success of implantation depends on a receptive endometrium, a normal blastocyst and synchronized cross-talk at the maternal–fetal interface. The progression of pregnancy then requires immunological tolerance which allows conceptus survival. A cascade of cytokines mediates this dialogue and is crucial in the cross-talk between the immune and endocrine systems. The first known human embryo-derived signal is chorionic gonadotropin (hCG) by which the embryo profoundly influences immunological tolerance and angiogenesis at the maternal–fetal interface. hCG levels coincide with the development of trophoblast tolerance. Indeed, it increases the number of uterine natural killer cells that play a key role in the establishment of pregnancy. hCG also intervenes in the development of local immune tolerance through the cellular system of apoptosis via Fas/Fas-Ligand. It modulates the Th1/Th2 balance and acts on complement C3 and C4A/B factors modulating decidual immunity. The transient tolerance evident during gestation is at least partially achieved via the presence of regulatory T cells which are attracted by hCG at the fetal–maternal interface. Finally, hCG treatment of activated dendritic cells results in an up-regulation of MHC class II, IL-10 and IDO expression, reducing the ability to stimulate T cell proliferation. Successful implantation requires an extensive endometrial angiogenesis in the implantation site. Recent data demonstrate angiogenic effects of hCG via its interaction with endometrial and endothelial LH/hCG receptors. Our review focuses on these functions of hCG, giving new insight into the endocrine–immune dialogue that exists between the conceptus and immune cells within the receptive endometrium at the time of implantation. [less ▲]

Detailed reference viewed: 61 (19 ULg)
Full Text
Peer Reviewed
See detailPerformance evaluation of microbead and ELISA assays for follicular G-CSF: a non-invasive biomarker of oocyte developmental competence for embryo implantation.
Lédée, N.; Munaut, Carine ULg; Serazin, Valerie et al

in Journal of Reproductive Immunology (2010), 86(2), 126-32

G-CSF in individual follicular fluids correlates with the potential of the corresponding embryo to result in a live birth after transfer in IVF. To evaluate the requirements for routine follicular fluid G ... [more ▼]

G-CSF in individual follicular fluids correlates with the potential of the corresponding embryo to result in a live birth after transfer in IVF. To evaluate the requirements for routine follicular fluid G-CSF quantification, we compared follicular fluid G-CSF measurements made with two multiplexed microbead assays purchased from Bio-Rad Laboratories and R&D Systems, and a commercial G-CSF ELISA (R&D Systems). Individual follicular fluids (n=139) associated with transferred embryos were analysed to determine cytokine profile and the fate of each transferred embryo was recorded. The effect of multiplexing as well as comparison of the respective performances of the microbead assay with a flow cytometry assay was explored. Multivariable logistic regression analysis was performed and receiver operating characteristic (ROC) analysis was used to determine the performance and sensitivity/specificity of each method for individual follicular fluids. Covariate factors known to influence IVF outcome such as age, serum oestradiol and embryo score were systematically integrated in each analysis. The quantification of follicular fluid G-CSF using microbead assay methodologies, but not ELISA, yielded results showing the utility of follicular fluid G-CSF as a biomarker predictive of a successful delivery (Au(roc): 0.77 [0.68-0.84] (p=0.003) and 0.75 [0.66-0.82] (p=0.004) for Bio-Rad and R&D Systems microbead assays respectively), whereas follicular fluid G-CSF values quantified by ELISA were not predictive (Au(roc):0.61 [0.52-0.70] p=0.84). Microbead assay and flow cytometry appeared similarly efficient for quantifying follicular fluid G-CSF and multiplex versus single-plex assays did not influence the reliability of quantification. [less ▲]

Detailed reference viewed: 47 (16 ULg)