References of "Eulaers, Eva"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: XIV. Time delay of the doubly lensed quasar SDSS~J1001+5027
Rathna Kumar, S.; Tewes, M.; Stalin, C.S. et al

in Astronomy and Astrophysics (2013), 557

This paper presents optical R-band light curves and the time delay of the doubly imaged gravitationally lensed quasar SDSS J1001+5027 at a redshift of 1.838. We have observed this target for more than six ... [more ▼]

This paper presents optical R-band light curves and the time delay of the doubly imaged gravitationally lensed quasar SDSS J1001+5027 at a redshift of 1.838. We have observed this target for more than six years, between March 2005 and July 2011, using the 1.2-m Mercator Telescope, the 1.5-m telescope of the Maidanak Observatory and the 2-m Himalayan Chandra Telescope. Our resulting light curves are composed of 443 independent epochs, and show strong intrinsic quasar variability, with an amplitude of the order of 0.2 magnitudes. From this data, we measure the time delay using five different methods, all relying on distinct approaches. One of these techniques is a new development presented in this paper. All our time-delay measurements are perfectly compatible. By combining them, we conclude that image A is leading B by 119.3 ± 3.3 days (1σ, 2.8%), including systematic errors. It has been shown recently that such accurate time-delay measurements offer a highly complementary probe of dark energy and spatial curvature, as they independently constrain the Hubble constant. The next mandatory step towards using SDSS J1001+5027 in this context will be the measurement of the redshift of the lensing galaxy, in combination with deep HST imaging. [less ▲]

Detailed reference viewed: 3 (2 ULg)
Full Text
See detailTime Delays in Gravitationally Lensed Quasars
Eulaers, Eva ULg; Magain, Pierre ULg; Sohy, Sandrine ULg

Poster (2013, June 25)

Detailed reference viewed: 4 (1 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: XII. Time delays of the doubly lensed quasars SDSS~J1206+4332 and HS~2209+1914
Eulaers, Eva ULg; Tewes, Malte; Magain, Pierre ULg et al

in Astronomy and Astrophysics (2013)

Aims. Within the framework of the COSMOGRAIL collaboration we present 7- and 8.5-year-long light curves and time-delay esti- mates for two gravitationally lensed quasars: SDSS J1206+4332 and HS 2209+1914 ... [more ▼]

Aims. Within the framework of the COSMOGRAIL collaboration we present 7- and 8.5-year-long light curves and time-delay esti- mates for two gravitationally lensed quasars: SDSS J1206+4332 and HS 2209+1914. Methods. We monitored these doubly lensed quasars in the R-band using four telescopes: the Mercator, Maidanak, Himalayan Chandra, and Euler Telescopes, together spanning a period of 7 to 8.5 observing seasons from mid-2004 to mid-2011. The pho- tometry of the quasar images was obtained through simultaneous deconvolution of these data. The time delays were determined from these resulting light curves using four very different techniques: a dispersion method, a spline fit, a regression difference technique, and a numerical model fit. This minimizes the bias that might be introduced by the use of a single method. Results. The time delay for SDSS J1206+4332 is ∆tAB = 111.3 ± 3 days with A leading B, confirming a previously published result within the error bars. For HS 2209+1914 we present a new time delay of ∆tBA = 20.0 ± 5 days with B leading A. Conclusions. The combination of data from up to four telescopes have led to well-sampled and nearly 9-season-long light curves, which were necessary to obtain these results, especially for the compact doubly lensed quasar HS 2209+1914. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL XIII: Time delays and 9-yr optical monitoring of the lensed quasar RX J1131-1231
Tewes, M.; Courbin, F.; Meylan, G. et al

in Astronomy and Astrophysics (2013)

We present the results from 9 years of optically monitoring the gravitationally lensed z=0.658 quasar RX J1131-1231. The R band light curves of the 4 individual images of the quasar are obtained using ... [more ▼]

We present the results from 9 years of optically monitoring the gravitationally lensed z=0.658 quasar RX J1131-1231. The R band light curves of the 4 individual images of the quasar are obtained using deconvolution photometry, for a total of 707 epochs. Several sharp quasar variability features strongly constrain the time delays between the quasar images. Using three different numerical techniques, we measure these delays for all possible pairs of quasar images, while always processing the 4 light curves simultaneously. For all three methods, the delays between the 3 close images A, B and C are compatible with being 0, while we measure the delay of image D to be 91 days, with a fractional uncertainty of 1.5% (1 sigma), including systematic errors. Our analysis of random and systematic errors accounts in a realistic way for the observed quasar variability, fluctuating microlensing magnification over a broad range of temporal scales, noise properties, and seasonal gaps. Finally, we find that our time delay measurement methods yield compatible results when applied to subsets of the data. [less ▲]

Detailed reference viewed: 14 (5 ULg)
Full Text
Peer Reviewed
See detailChemical surface inhomogeneities in late B-type stars with Hg and Mn peculiarity: I. Spot evolution in HD 11753 on short and long time scales
Korhonen, Heidi; Gonzalez, J.F.; Briquet, Maryline ULg et al

in Astronomy and Astrophysics (2013), 553

Detailed reference viewed: 17 (1 ULg)
Full Text
See detailTime delays in gravitationally lensed quasars
Eulaers, Eva ULg

Doctoral thesis (2012)

Starting with a concise introduction on gravitational lensing, time delays between lensed quasars and its importance as a cosmological probe to estimate the Hubble constant, we present our contribution to ... [more ▼]

Starting with a concise introduction on gravitational lensing, time delays between lensed quasars and its importance as a cosmological probe to estimate the Hubble constant, we present our contribution to this domain. In a first part, we explain the details of the Numerical Model Fit, a method to estimate time delays between two or more lensed quasar images. We apply this technique to the light curves of 11 lensed quasars with known time delays in order to analyse these published delays in a more homogeneous way. Some results can be confirmed, but others prove to be unreliable. The second part is devoted to the most recent results of our contribution to the COSMOGRAIL collaboration. We briefly summarize the data reduction and analysis tools before the presentation of the photometry and time delay analysis of 6 lensed quasars. On top of the confirmation of time delays in two objects, SDSS J1206+4332 and SDSS J1650+4251, we are the first to measure the time delay in three doubly lensed quasar systems: HS 2209+1914, SDSS J0903+5028, and SDSS J1155+6346. The time delay analysis of the well-known quadruply lensed quasar PG 1115+080 reveals interesting elements, and asks for further investigation of longer light curves. [less ▲]

Detailed reference viewed: 51 (7 ULg)
Full Text
See detailCOSMOGRAIL: Measuring Time Delays of Gravitationally Lensed Quasars to Constrain Cosmology
Tewes, Malte; Courbin, Frédéric; Meylan, Georges et al

in The Messenger (2012)

COSMOGRAIL is a long-term programme for the photometric monitoring of gravitationally lensed quasars. It makes use of several medium-size telescopes to derive long and well-sampled light curves of lensed ... [more ▼]

COSMOGRAIL is a long-term programme for the photometric monitoring of gravitationally lensed quasars. It makes use of several medium-size telescopes to derive long and well-sampled light curves of lensed quasars, in order to measure the time delays between the quasar images. These delays directly relate to the Hubble constant H0, without any need for secondary distance calibrations. COSMOGRAIL was initiated in 2004, and has now secured almost a decade of data, resulting in cosmological constraints that are very complementary to other cosmological probes. [less ▲]

Detailed reference viewed: 30 (3 ULg)
Full Text
Peer Reviewed
See detailTime delays for eleven gravitationally lensed quasars revisited
Eulaers, Eva ULg; Magain, Pierre ULg

in Astronomy and Astrophysics (2011), 536

Aims. We test the robustness of published time delays for 11 lensed quasars by using two techniques to measure time shifts in their light curves. Methods. We chose to use two fundamentally different ... [more ▼]

Aims. We test the robustness of published time delays for 11 lensed quasars by using two techniques to measure time shifts in their light curves. Methods. We chose to use two fundamentally different techniques to determine time delays in gravitationally lensed quasars: a method based on fitting a numerical model and another one derived from the minimum dispersion method introduced by Pelt and collaborators. To analyse our sample in a homogeneous way and avoid bias caused by the choice of the method used, we apply both methods to 11 different lensed systems for which delays have been published: JVAS B0218+357, SBS 0909+523, RX J0911+0551, FBQS J0951+2635, HE 1104-1805, PG 1115+080, JVAS B1422+231, SBS 1520+530, CLASS B1600+434, CLASS B1608+656, and HE 2149-2745 Results. Time delays for three double lenses, JVAS B0218+357, HE 1104-1805, and CLASS B1600+434, as well as the quadruply lensed quasar CLASS B1608+656 are confirmed within the error bars. We correct the delay for SBS 1520+530. For PG 1115+080 and RX J0911+0551, the existence of a second solution on top of the published delay is revealed. The time delays in four systems, SBS 0909+523, FBQS J0951+2635, JVAS B1422+231, and HE 2149-2745 prove to be less reliable than previously claimed. Conclusions. If we wish to derive an estimate of H0 based on time delays in gravitationally lensed quasars, we need to obtain more robust light curves for most of these systems in order to achieve a higher accuracy and robustness on the time delays. [less ▲]

Detailed reference viewed: 18 (7 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223
Courbin, F.; Chantry, Virginie ULg; Revaz, Y. et al

in Astronomy and Astrophysics (2011), 536

We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent photometric points obtained in the R-band between January 2004 and March 2010 ... [more ▼]

We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent photometric points obtained in the R-band between January 2004 and March 2010. With seven years of data, we clearly show that quasar image A is affected by strong microlensing variations and that the time delays are best expressed relative to quasar image B. We measured ΔtBC = 7.8 ± 0.8 days, ΔtBD = -6.5 ± 0.7 days and ΔtCD = -14.3 ± 0.8 days. We spacially deconvolved HST NICMOS2 F160W images to derive accurate astrometry of the quasar images and to infer the light profile of the lensing galaxy. We combined these images with a stellar population fitting of a deep VLT spectrum of the lensing galaxy to estimate the baryonic fraction, fb, in the Einstein radius. We measured fb = 0.65-0.10+0.13 if the lensing galaxy has a Salpeter IMF and fb = 0.45-0.07+0.04 if it has a Kroupa IMF. The spectrum also allowed us to estimate the velocity dispersion of the lensing galaxy, σap = 222 ± 34 km s-1. We used fb and σap to constrain an analytical model of the lensing galaxy composed of an Hernquist plus generalized NFW profile. We solved the Jeans equations numerically for the model and explored the parameter space under the additional requirement that the model must predict the correct astrometry for the quasar images. Given the current error bars on fb and σap, we did not constrain H0 yet with high accuracy, i.e., we found a broad range of models with χ2 < 1. However, narrowing this range is possible, provided a better velocity dispersion measurement becomes available. In addition, increasing the depth of the current HST imaging data of HE 0435-1223 will allow us to combine ourconstraints with lens reconstruction techniques that make use of the full Einstein ring that is visible in this object. Based on observations made with the 1.2 m Euler Swiss Telescope, the 1.5 m telescope of Maidanak Observatory in Uzbekistan, and with the 1.2 m Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The NASA/ESA Hubble Space Telescope data was obtained from the data archive at the Space Telescope Science Institute, which is operated by AURA, the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26555.Light curves are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/536/A53 [less ▲]

Detailed reference viewed: 29 (11 ULg)
See detailMeasuring Time Delays in Gravitational Lenses
Eulaers, Eva ULg

Master of advanced studies dissertation (2008)

Detailed reference viewed: 9 (0 ULg)
Full Text
See detailMeasuring Time Delays in Gravitational Lenses
Eulaers, Eva ULg; Magain, Pierre ULg; Sohy, Sandrine ULg et al

Poster (2008, September)

Detailed reference viewed: 4 (0 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses - VII. Time delays and the Hubble constant from WFI J2033-4723
Vuissoz, Christel; Courbin, F.; Sluse, D. et al

in Astronomy and Astrophysics (2008), 488(2), 481-490

Gravitationally lensed quasars can be used to map the mass distribution in lensing galaxies and to estimate the Hubble constant H-0 by measuring the time delays between the quasar images. Here we report ... [more ▼]

Gravitationally lensed quasars can be used to map the mass distribution in lensing galaxies and to estimate the Hubble constant H-0 by measuring the time delays between the quasar images. Here we report the measurement of two independent time delays in the quadruply imaged quasar WFI J2033-4723 (z = 1.66). Our data consist of R-band images obtained with the Swiss 1.2 m EULER telescope located at La Silla and with the 1.3 m SMARTS telescope located at Cerro Tololo. The light curves have 218 independent epochs spanning 3 full years of monitoring between March 2004 and May 2007, with a mean temporal sampling of one observation every 4th day. We measure the time delays using three different techniques, and we obtain Delta t(B-A) = 35.5 +/- 1.4 days (3.8%) and Delta t(B-C) = 62.6(-2.3)(+4.1) days ((+6.5%)(-3.7%)), where A is a composite of the close, merging image pair. After correcting for the time delays, we find R-band flux ratios of F-A/F-B = 2.88 +/- 0.04, F-A/F-C = 3.38 +/- 0.06, and F-A1/F-A2 = 1.37 +/- 0.05 with no evidence for microlensing variability over a time scale of three years. However, these flux ratios do not agree with those measured in the quasar emission lines, suggesting that longer term microlensing is present. Our estimate of H-0 agrees with the concordance value: non-parametric modeling of the lensing galaxy predicts H-0 = 67(-10)(+13) km s(-1) Mpc(-1), while the Single Isothermal Sphere model yields H-0 = 63(-3)(+7) km s(-1) Mpc(-1) (68% confidence level). More complex lens models using a composite de Vaucouleurs plus NFW galaxy mass profile show twisting of the mass isocontours in the lensing galaxy, as do the non-parametric models. As all models also require a significant external shear, this suggests that the lens is a member of the group of galaxies seen in field of view of WFI J2033-4723. [less ▲]

Detailed reference viewed: 32 (19 ULg)
See detailSimulation and analysis of the gravitational microlensing effect
Eulaers, Eva ULg

Master's dissertation (2006)

Detailed reference viewed: 10 (0 ULg)