References of "Barth, Alexander"
     in
Bookmark and Share    
Full Text
See detailExperiences with using netCDF 4
Troupin, Charles ULiege; Watelet, Sylvain ULiege; Barth, Alexander ULiege et al

Conference (2017, October 05)

Detailed reference viewed: 13 (2 ULiège)
Full Text
See detailNotebooks for documenting work-flows
Troupin, Charles ULiege; Barth, Alexander ULiege; Muñoz, Cristian et al

Conference (2017, October 02)

Detailed reference viewed: 13 (1 ULiège)
Full Text
See detailSoftware citation and process traceability
Troupin, Charles ULiege; Muñoz, Cristian; Rújula, Miquel Angel et al

Conference (2017, October)

Detailed reference viewed: 23 (4 ULiège)
Peer Reviewed
See detailThree-dimensional modelling of the hydrodynamics of the Southern Bight of the North Sea: first results
Ivanov, Evgeny ULiege; Capet, Arthur ULiege; Barth, Alexander ULiege et al

Poster (2017, April 28)

In the frame of the Belgian research project FaCE-It (Functional biodiversity in a Changing sedimentary Environment: Implications for biogeochemistry and food webs in a managerial setting), the impact of ... [more ▼]

In the frame of the Belgian research project FaCE-It (Functional biodiversity in a Changing sedimentary Environment: Implications for biogeochemistry and food webs in a managerial setting), the impact of dredging activities andoffshorewindfarminstallationonthespatialdistributionofsedimentgrainsize,biodiversityandbiogeochemistry will be estimated in the Southern Bight of the North Sea (SBNS) with a focus on the Belgian Coastal Zone (BCZ). To reach this goal, the three-dimensional hydrodynamical model ROMS-COAWST is implemented in the SBNS in order to simulate the complex hydrodynamics and sediment transport. Two levels of nesting are used to reach a resolutionof250mintheBCZ.Themodelisforcedattheair-seainterfacebythe6-hourlyECMWFERA-interim atmospheric dataset and at the open boundaries by the coarse resolution model results available from CMEMS (Copernicus Marine Environment Monitoring Service), and also considers tides and 4 main rivers (Scheldt, Rhine with Maas, Thames and Seine). Two types of simulations have been performed: a 10-years climatological simulation and a simulation over 20032013toinvestigatetheinterannualdynamics.Themodelskillsareevaluatedbycomparingitsoutputstohistorical data (e.g. salinity, temperature and currents) from remote sensing and in-situ. The sediment transport module will then be implemented and its outputs compared to historical and newly collected (in the frame of FaCE-iT) observations on grain size distribution as well as with satellite Suspended Particulate Matter (SPM) images. This will allow assessing the impact of substrate modification due to offshore human activities at local and regional scales. [less ▲]

Detailed reference viewed: 25 (7 ULiège)
Full Text
See detailCharacteristics of surface chlorophyll-a concentrations in the South China Sea
Huynh, Thi Hong Ngu ULiege; Alvera Azcarate, Aida ULiege; Barth, Alexander ULiege et al

Poster (2017, April 25)

In this study, the spatial and temporal variability of surface chlorophyll-a (Chl-a) concentrations in the South China Sea (SCS) is investigated, using the cloud-free MODISA Chl-a data set (2003-2016 ... [more ▼]

In this study, the spatial and temporal variability of surface chlorophyll-a (Chl-a) concentrations in the South China Sea (SCS) is investigated, using the cloud-free MODISA Chl-a data set (2003-2016) reconstructed by the Data Interpolating Empirical Orthogonal Functions technique. EOF analysis on the reconstructed data set presents the characteristics of the surface Chl-a: (1) the first mode presents the high Chl-a concentrations in the coastal regions, except those of the Palawan and Philippines, generally with peaks in summer (June-July) and winter (November-December). (2) the second mode shows the seasonal variability of Chl-a in the whole basin, increasing in winter and decreasing in summer. (3) the third mode highlights the out-of-phase variability of the southern SCS Chl-a between the west and east coasts in winter and summer. The analysis also indicates that the variability of surface Chl-a is influenced by ENSO with a time lag of 5-9 months. [less ▲]

Detailed reference viewed: 31 (3 ULiège)
See detailThree-dimensional modelling of the Southern Bight of the North Sea: first results and perspectives
Ivanov, Evgeny ULiege; Capet, Arthur ULiege; Barth, Alexander ULiege et al

Poster (2017, March 03)

The impact of offshore wind farm installation and dredging activities on the spatial distribution and dynamics of sediment grain size, biogeochemistry and biodiversity will be estimated in the Southern ... [more ▼]

The impact of offshore wind farm installation and dredging activities on the spatial distribution and dynamics of sediment grain size, biogeochemistry and biodiversity will be estimated in the Southern Bight of the North Sea (SBNS) with a focus on the Belgian Coastal Zone (BCZ) in the frame of the FaCE-It research project (Functional biodiversity in a Changing sedimentary Environment: Implications for biogeochemistry and food webs in a managerial setting). The three-dimensional hydrodynamical model ROMS-COAWST was implemented for simulation of the complex hydrodynamics of SBNS and sediment transport. The first level of nesting with the resolution of 1 km was used in the area of Belgian Economical Zone. In order to reach a fine resolution of 250 m in the BCZ, the second level of nesting will be used. Six-hourly ECMWF ERA-interim meteorological data was used to force the model at the sea-air boundary and the coarse resolution model results available from Copernicus Marine Environment Monitoring Service were used to force the model at the open boundaries. Tides and rivers were also considered. Next types of long-run simulations have been conducted: a 10-years climatological simulation and an interannual simulation over 2004-2013 in order to investigate the interannual dynamics. The model accuracy was evaluated through validation of its outputs against observed salinity, temperature and currents data (remote sensing and in-situ). Results validation of currents and temperature and salinity horizontal fields and vertical profiles against available satellite fields and in-situ data, i.e. from the project field campaign, is conducted and discussed. Application of the nested grid and its benefits for results accuracy is also presented. [less ▲]

Detailed reference viewed: 21 (1 ULiège)
Full Text
See detailBlending of Radial HF Radar Surface Current and Model Using ETKF Scheme For The Sunda Strait
Subekti Mujiasih, ULiege; Riyadi, Mochammad; Wandono, Dr et al

Conference (2017)

Preliminary study of data blending of surface current for Sunda Strait-Indonesia has been done using the analysis scheme of the Ensemble Transform Kalman Filter (ETKF). The method is utilized to combine ... [more ▼]

Preliminary study of data blending of surface current for Sunda Strait-Indonesia has been done using the analysis scheme of the Ensemble Transform Kalman Filter (ETKF). The method is utilized to combine radial velocity from HF Radar and u and v component of velocity from Global Copernicus - Marine environment monitoring service (CMEMS) model. The initial ensemble is based on the time variability of the CMEMS model result. Data tested are from 2 CODAR Seasonde radar sites in Sunda Strait and 2 dates such as 09 September 2013 and 08 February 2016 at 12.00 UTC. The radial HF Radar data has a hourly temporal resolution, 20-60 km of spatial range, 3 km of range resolution, 5 degree of angular resolution and spatial resolution and 11.5-14 MHz of frequency range. The u and v component of the model velocity represents a daily mean with 1/12 degree spatial resolution. The radial data from one HF radar site is analyzed and the result compared to the equivalent radial velocity from CMEMS for the second HF radar site. Error checking is calculated by root mean squared error (RMSE). Calculation of ensemble analysis and ensemble mean is using Sangoma software package. The tested R which represents observation error covariance matrix, is a diagonal matrix with diagonal elements equal 0.05, 0.5 or 1.0 m 2 /s 2 . The initial ensemble members comes from a model simulation spanning a month (September 2013 or February 2016), one year (2013) or 4 years (2013-2016). The spatial distribution of the radial current are analyzed and the RMSE values obtained from independent HF radar station are optimized. It was verified that the analysis reproduces well the structure included in the analyzed HF radar data. More importantly, the analysis was also improved relative to the second independent HF radar site. RMSE of the improved analysis is better than first HF Radar site Analysis. The best result of the blending exercise was obtained for observation error variance equal to 0.05 m 2 /s 2 . This study is still preliminary step, but it gives promising result for bigger size of data, combining other model and further development [less ▲]

Detailed reference viewed: 36 (3 ULiège)
Full Text
Peer Reviewed
See detailCorrecting circulation biases in a lower-resolution global general circulation model with data assimilation
Canter, Martin ULiege; Barth, Alexander ULiege; Beckers, Jean-Marie ULiege

in Ocean Dynamics (2016)

In this study, we aim at developing a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias by directly adding an additional ... [more ▼]

In this study, we aim at developing a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias by directly adding an additional source term into the model equations. This method is presented and tested first with a twin experiment on a fully controlled Lorenz ’96 model. It is then applied to the lower-resolution global circulation NEMO-LIM2 model, with both a twin experiment and a real case experiment. Sea surface height observations are used to create a forcing to correct the poorly located and estimated currents. Validation is then performed throughout the use of other variables such as sea surface temperature and salinity. Results show that the method is able to consistently correct part of the model bias. The bias correction term is presented and is consistent with the limitations of the global circulation model causing bias on the oceanic currents. [less ▲]

Detailed reference viewed: 55 (17 ULiège)
Full Text
Peer Reviewed
See detailCorrection of inertial oscillations by assimilation of HFradar data in a model of the Ligurian Sea
Vandenbulcke, Luc ULiege; Barth, Alexander ULiege; Beckers, Jean-Marie ULiege

in Ocean Dynamics (2016)

This article aims at analyzing if high-frequency radar observations of surface currents allow to improve model forecasts in the Ligurian Sea, where inertial oscillations are a dominant feature. An ... [more ▼]

This article aims at analyzing if high-frequency radar observations of surface currents allow to improve model forecasts in the Ligurian Sea, where inertial oscillations are a dominant feature. An ensemble of ROMS models covering the Ligurian Sea, and nested in the Mediterranean Forecasting System, is coupled with two WERA high-frequency radars. A sensitivity study allows to determine optimal parameters for the ensemble filter. By assimilating observations in a single point, the obtained correction shows that the forecast error covariance matrix represents the inertial oscillations, as well as large- and meso-scale processes. Furthermore, it is shown that the velocity observations can correct the phase and amplitude of the inertial oscillations. Observations are shown to have a strong effect during approximately half a day, which confirms the importance of using a high temporal observation frequency. In general, data assimilation of HF radar observations leads to a skill score of about 30 % for the forecasts of surface velocity. [less ▲]

Detailed reference viewed: 42 (7 ULiège)
See detailDeveloping a hydrodynamical model of the Southern Bight of the North Sea for impact studies
Ivanov, Evgeny ULiege; Capet, Arthur ULiege; Barth, Alexander ULiege et al

Poster (2016, November 08)

In the frame of the Brain FaCE-It project (Functional biodiversity in a Changing sedimentary Environment: Implications for biogeochemistry and food webs in a managerial setting), the impact of fining and ... [more ▼]

In the frame of the Brain FaCE-It project (Functional biodiversity in a Changing sedimentary Environment: Implications for biogeochemistry and food webs in a managerial setting), the impact of fining and hardening resulting from dredging and wind farms installation on the sediment grain size distribution has to be assessed at the scale of the Southern Bight of the North Sea (SBNS) with a particular focus on the Belgian Coastal Zone (BCZ). With this aim, the ROMS-COAWST tri-dimensional (3D) hydrodynamic model is implemented to simulate the hydrodynamics in the SBNS. At its open boundaries with the Atlantic Ocean and the North Sea, the model is forced with the results of a coarse resolution model available from Mercator. A high resolution of 250 m is used in the area of the BCZ where the accuracy of model predictions needs to be refined. Model currents, tides, temperature and salinity fields will be described and first validation exercises with satellite and local data will be presented and discussed in regards with the objectives of FaCE-It. In a next step, the model will be coupled with a sediment transport in order to describe the dynamics of suspended particulate materials (SPM) and the distribution of the seafloor sediment grain size. When finalized the hydrodynamic model will be coupled with a diagenetic model and will provide environmental conditions for scaling up local foodweb studies that are performed in the frame of FaCE-iT. The final aim is to assess the impact of substrate modifications due to aggregate extraction and wind farms on the biogeochemistry, benthic functionality and food webs at local (around the wind farm) and regional scales (SBNS). [less ▲]

Detailed reference viewed: 12 (1 ULiège)
Full Text
See detailOceanBrowser: on-line visualization of gridded ocean data and in situ observations
Barth, Alexander ULiege; Watelet, Sylvain ULiege; Troupin, Charles et al

Conference (2016, October)

Detailed reference viewed: 17 (4 ULiège)
See detailDINEOF analyses of Sea Surface Temperature data in the Black Sea
Alvera Azcarate, Aida ULiege; Vandenbulcke, Luc ULiege; Barth, Alexander ULiege et al

Scientific conference (2016, September 29)

Detailed reference viewed: 22 (5 ULiège)
Full Text
Peer Reviewed
See detailAnalysis of Ocean in Situ Observations and Web - Based Visualization: From Individual Measurements to an Integrated View
Barth, Alexander ULiege; Watelet, Sylvain ULiege; Troupin, Charles et al

in Diviacco, Paolo; Leadbetter, Adam; Glaves, Helen (Eds.) Oceanographic and Marine Cross-Domain Data Management for Sustainable Development (2016)

The sparsity of observations poses a challenge common to various ocean disciplines. Even for physical parameters where the spatial and temporal coverage is higher, current observational networks ... [more ▼]

The sparsity of observations poses a challenge common to various ocean disciplines. Even for physical parameters where the spatial and temporal coverage is higher, current observational networks undersample a broad spectrum of scales. This situation is generally more severe for chemical and biological parameters because such sensors are less widely deployed. The present chapter describes the analysis tool DIVA (Data-Interpolating Variational Analysis) which is designed to generate gridded fields from in situ observations. DIVA has been applied to various physical (temperature and salinity), chemical (concentration of nitrate, nitrite and phosphate) and biological parameters (abundance of a species). The chapter also shows the technologies used to visualize the gridded fields. Visualization of analyses from in situ observations provide a unique set of challenges since the accuracy of the analysed field is not spatially uniform as it strongly depends on the location of the observations. In addition, an adequate treatment of the depth and time dimensions is essential. [less ▲]

Detailed reference viewed: 97 (7 ULiège)
Full Text
Peer Reviewed
See detailAnalysis of SMOS sea surface salinity data using DINEOF
Alvera Azcarate, Aïda ULiege; Barth, Alexander ULiege; Parard, Gaëlle ULiege et al

in Remote Sensing of Environment (2016), 180

n analysis of daily Sea Surface Salinity (SSS) at 0.15 ° × 0.15° spatial resolution from the Soil Moisture and Ocean Salinity (SMOS) satellite mission using DINEOF (Data Interpolating Empirical Orthogonal ... [more ▼]

n analysis of daily Sea Surface Salinity (SSS) at 0.15 ° × 0.15° spatial resolution from the Soil Moisture and Ocean Salinity (SMOS) satellite mission using DINEOF (Data Interpolating Empirical Orthogonal Functions) is presented. DINEOF allows reconstructing missing data using a truncated EOF basis, while reducing the amount of noise and errors in geophysical datasets. This work represents a first application of DINEOF to SMOS SSS. Results show that a reduction of the error and the amount of noise is obtained in the DINEOF SSS data compared to the initial SMOS SSS data. Errors associated to the edge of the swath are detected in 2 EOFs and effectively removed from the final data, avoiding removing the data at the edges of the swath in the initial dataset. The final dataset presents a centered root mean square error of 0.2 in open waters when comparing with thermosalinograph data at their original spatial and temporal resolution. Constant biases present near land masses, large scale biases and latitudinal biases cannot be corrected with DINEOF because persistent signals are retained in high order EOFs, and therefore these need to be corrected separately. The signature of the Douro and Gironde rivers is detected in the DINEOF SSS. The minimum SSS observed in the Gironde plume corresponds to a flood event in June 2013, and the shape and size of the Douro river shows a good agreement with chlorophyll-a satellite data. These examples show the capacity of DINEOF to remove noise and provide a full SSS dataset at a high temporal and spatial resolution with reduced error, and the possibility to retrieve physical signals in zones with high initial errors. [less ▲]

Detailed reference viewed: 108 (18 ULiège)
Full Text
See detailData-Interpolating Variational Analysis (DIVA) software: recent development and application
Watelet, Sylvain ULiege; Back, Örjan; Barth, Alexander ULiege et al

Poster (2016, April 20)

Detailed reference viewed: 25 (4 ULiège)
Full Text
Peer Reviewed
See detailReconstruction and analysis of long-term satellite-derived sea surface temperature for the South China Sea
Huynh, Thi Hong Ngu ULiege; Alvera Azcarate, Aïda ULiege; Barth, Alexander ULiege et al

in Journal of Oceanography (2016)

Sea surface temperature (SST) is one of the key variables often used to investigate ocean dynamics, ocean-atmosphere interaction, and climate change. Unfortunately, the SST data sources in the South China ... [more ▼]

Sea surface temperature (SST) is one of the key variables often used to investigate ocean dynamics, ocean-atmosphere interaction, and climate change. Unfortunately, the SST data sources in the South China Sea (SCS) are not abundant due to sparse measurements of in situ SST and a high percentage of missing data in the satellite-derived SST. Therefore, SST data sets with low resolution and/or a short-term period have often been used in previous researches. Here we used Data INterpolating Empirical Orthogonal Functions, a self-consistent and parameter-free method for filling in missing data, to reconstruct the daily nighttime 4-km AVHRR Pathfinder SST for the long-term period spanning from 1989 to 2009. In addition to the reconstructed field, we also estimated the local error map for each reconstructed image. Comparisons between the reconstructed and other data sets (satellite-derived microwave and in situ SSTs) show that the results are reliable for use in many different researches, such as validating numerical models, or identifying and tracking meso-scale oceanic features. Moreover, the Empirical Orthogonal Function (EOF) analysis of the reconstructed SST and the reconstructed SST anomalies clearly shows the subseasonal, seasonal, and interannual variability of SST under the influence of monsoon and El Niño-Southern Oscillation (ENSO), as well as reveals some oceanic features that could not be captured well in previous EOF analyses. The SCS SST often lags ENSO by about half a year. However, in this study, we see that the time lag changes with the frequencies of the SST variability, from 1 to 6 months. [less ▲]

Detailed reference viewed: 102 (17 ULiège)
Full Text
See detailAnalysis of ocean in situ observations and web-based visualization
Barth, Alexander ULiege; Watelet, Sylvain ULiege; Troupin, Charles ULiege et al

Conference (2016)

The sparsity of observations poses a challenge common to various ocean science disciplines. Even for physical parameters where the spatial and temporal coverage is higher, current observational networks ... [more ▼]

The sparsity of observations poses a challenge common to various ocean science disciplines. Even for physical parameters where the spatial and temporal coverage is higher, current observational networks undersample a broad spectrum of scales. The situation is generally more severe for chemical and biological parameters because related sensors are less widely deployed. The analysis tool DIVA (Data-Interpolating Variational Analysis) is designed to generate gridded fields from in situ observations. DIVA has been applied to various physical (temperature and salinity), chemical (concentration of nitrate, nitrite and phosphate) and biological parameters (abundance of a species) in the context of different European projects (SeaDataNet, EMODnet Chemistry and EMODnet Biology). We show the technologies used to visualize the gridded fields based on the Web Map Services standard. Visualization of analyses from in situ observations provides a unique set of challenges since the accuracy of the analysed field is not spatially uniform as it strongly depends on the observations location. In addition, an adequate handling of depth and time dimensions is essential. Beside visualizing the gridded fields, access is also given to the underlying observations. It is thus also possible to view more detailed information about the variability of the observations. The in situ observation visualization service allows one to display vertical profiles and time series and it is built upon OGC standards (the Web Feature Service and Web Processing Services) and following recommendation from the INSPIRE directive. [less ▲]

Detailed reference viewed: 19 (0 ULiège)
Full Text
See detailComparison of different assimilation schemes in an operational assimilation system with Ensemble Kalman Filter
Yan, Yajing; Barth, Alexander ULiege; Beckers, Jean-Marie ULiege et al

Poster (2016)

In this paper, four assimilation schemes, including an intermittent assimilation scheme (INT) and three incremental assimilation schemes (IAU 0, IAU 50 and IAU 100), are compared in the same assimilation ... [more ▼]

In this paper, four assimilation schemes, including an intermittent assimilation scheme (INT) and three incremental assimilation schemes (IAU 0, IAU 50 and IAU 100), are compared in the same assimilation experiments with a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. The three IAU schemes differ from each other in the position of the increment update window that has the same size as the assimilation window. 0, 50 and 100 correspond to the degree of superposition of the increment update window on the current assimilation window. Sea surface height, sea surface temperature, and temperature profiles at depth collected between January and December 2005 are assimilated. Sixty ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments The relevance of each assimilation scheme is evaluated through analyses on thermohaline variables and the current velocities. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with independent/semi-independent observations. For deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations, in order to diagnose the ensemble distribution properties in a deterministic way. For probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centered random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. [less ▲]

Detailed reference viewed: 14 (1 ULiège)
Full Text
See detailDeriving ocean climatologies with multivariate coupling
Barth, Alexander ULiege; Alvera Azcarate, Aida ULiege; Beckers, Jean-Marie ULiege

Conference (2016)

In situ measurements of ocean properties are generally sparsely distributed and thus undersample the ocean variability. Deriving ocean climatologies is a challenging task especially for biological and ... [more ▼]

In situ measurements of ocean properties are generally sparsely distributed and thus undersample the ocean variability. Deriving ocean climatologies is a challenging task especially for biological and chemical parameters where the number of data is, by an order of magnitude, smaller than for physical parameters. However, physical and biogeochemical parameters are related through the ocean dynamics. In particular fronts visible in physical parameters are often related to gradients in biogeochemical parameters. Ocean climatologies are generally derived for different variables independently. For biogeochemical parameters, only the very large-scale variability can be derived for poorly sampled areas. Here we present a method to derive multivariate analysis taking the relationship between physical and biogeochemical variables into account. The benefit of this procedure is showed by using model data for salinity, nitrate and phosphate of the Mediterranean Sea. The model fields are sampled at the locations of true observations (extracted from the World Ocean Database 2013) and the analysed fields are compared to the original model fields. The multivariate analysis result in a reduction of the RMS error and to a better representation of the gradients [less ▲]

Detailed reference viewed: 16 (2 ULiège)