References of "Aqil, Abdelhafid"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailBioinspired redox-active catechol-bearing polymers as ultra-robust organic cathodes for lithium storage
Patil, Nagaraj ULiege; Aqil, Abdelhafid ULiege; Ouhib, Farid ULiege et al

in Advanced Materials (in press)

Redox-active catechols are bioinspired precursors for ortho-quinones that are characterized by higher discharge potentials than para-quinones, the latter being extensively used as organic cathode ... [more ▼]

Redox-active catechols are bioinspired precursors for ortho-quinones that are characterized by higher discharge potentials than para-quinones, the latter being extensively used as organic cathode materials for lithium ion batteries (LIBs). Here, this study demonstrates that the rational molecular design of copolymers bearing catechol- and Li+ ion-conducting anionic pendants endow redox-active polymers (RAPs) with ultrarobust electrochemical energy storage features when combined to carbon nanotubes as a flexible, binder-, and metal current collector-free buckypaper electrode. The importance of the structure and functionality of the RAPs on the battery performances in LIBs is discussed. The structure-optimized RAPs can store high-capacities of 360 mA h g−1 at 5C and 320 mA h g−1 at 30C in LIBs. The high ion and electron mobilities within the buckypaper also enable to register 96 mA h g−1 (24% capacity retention) at an extreme C-rate of 600C (6 s for total discharge). Moreover, excellent cyclability is noted with a capacity retention of 98% over 3400 cycles at 30C. The high capacity, superior active-material utilization, ultralong cyclability, and excellent rate performances of RAPs-based electrode clearly rival most of the state-of-the-art Li+ ion organic cathodes, and opens up new horizons for large-scalable fabrication of electrode materials for ultrarobust Li storage. [less ▲]

Detailed reference viewed: 39 (9 ULiège)
Peer Reviewed
See detailGoing Inside Structural and Physicochemical Properties of Polymers using Ion Mobility-Mass Spectrometry
Haler, Jean ULiege; de la Rosa, Victor R.; Far, Johann ULiege et al

Conference (2017, September 06)

Detailed reference viewed: 39 (2 ULiège)
See detailMultifunctional poly(ionic liquid)s: from synthesis to applications in energy and environment
Detrembleur, Christophe ULiege; Patil, Nagaraj ULiege; Debuigne, Antoine ULiege et al

Conference (2017, May 24)

Poly(ionic liquid)s (PILs) are a subclass of polyelectrolytes that gained an enabling role in many fields of polymer chemistry and material science. PILs combine the unique properties of ionic liquids ... [more ▼]

Poly(ionic liquid)s (PILs) are a subclass of polyelectrolytes that gained an enabling role in many fields of polymer chemistry and material science. PILs combine the unique properties of ionic liquids with the flexibility and properties of macromolecules, and provide novel attractive functions. Recently, the precision design of novel PILs by controlled/living polymerization (CLP) techniques was intensively searched for developing emerging applications. This talk will first discuss recent routes for the precision synthesis of all vinyl-imidazolium based (co)polymers in water or in organic media under non-demanding experimental conditions. We will then describe the preparation of innovative redox and surface active PILs, and show the potential of these PILs in battery applications and for multifunctional coatings. More specifically, we will show how macromolecular engineering can be exploited for designing innovative polymer cathodes for ultra-high performance Li storage with unprecedented performances (high capacities and ultra-long life-span over more than 3000 cycles at an extreme current-rate). This innovative and effective molecular design for polymer cathodes opens up new horizons in developing an economical and environmentally benign platform for large-scalable fabrication of high performance batteries. [less ▲]

Detailed reference viewed: 57 (1 ULiège)
See detailSynthesis of hierarchical N-doped porous carbon structure/nanospheres Fe2O3 composites and its application in lithium-ion battery as lithium-ion anodes
Alkarmo, Walid ULiege; Ouhib, Farid ULiege; Aqil, Abdelhafid ULiege et al

Poster (2017, May 04)

Nitrogen-doped porous carbons are of special interest, because their unique physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, and ... [more ▼]

Nitrogen-doped porous carbons are of special interest, because their unique physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, and are thus very important for applications in the fields of catalysis, environment techniques and energy generation and storage. Moreover, nitrogen-doping can be further amplified in a porous structure that bears a high surface area to increases their materials performance in electrochemical devices, such as double layer capacitors and lithium-ion batteries. In addition, nitrogen-doping can enhance the lithium insertion, between the nitrogen-doped carbon material and lithium. And it can create a large number of defects in the porous configuration and offer more active sites for lithium insertion. Toward this goal, a hierarchically structured macro- and mesoporous N-doped carbon with dispersed Fe2O3 nanoparticles (NDC@Fe2O3) is prepared by thermal treatment of a novel composite composed by PMMA particles decorated by graphene oxide (GO), PPy and iron salts. The NDC@Fe2O3 composite exhibited high surface area with a hierarchical pores structure. Integrated as a lithium ion battery anode, NDC@Fe2O3 exhibited high reversible capacity of 930 mA h/g over 200 cycles. The combination of Fe2O3 nanoparticles with nitrogen-doped porous carbons to form hybrid anode has been an efficient way to maintain the electronic integrity of the whole electrode since the carbon acts as a buffer layer to accommodate the volume variation and to provide multidimensional electron transport pathways during the charge/discharge process. [less ▲]

Detailed reference viewed: 91 (9 ULiège)
See detailAll poly(ionic) liquid-based block copolymers incorporating fluorinated and triethyleneglycol units: direct synthesis in water and investigation as single-ion conductive solids
Ouhib, Farid ULiege; Cordella, Daniela; Aqil, Abdelhafid ULiege et al

Poster (2017, May 04)

Poly(ionic liquid)s (PILs) have attracted a considerable attention as innovative single-ion solid polyelectrolytes (SPEs) in substitution to the more conventional electrolytes for a variety of ... [more ▼]

Poly(ionic liquid)s (PILs) have attracted a considerable attention as innovative single-ion solid polyelectrolytes (SPEs) in substitution to the more conventional electrolytes for a variety of electrochemical devices. Imidazolium-based PILs are amongst the most investigated, because they are easy to synthesize and some of them have shown a good combination between high ionic conductivity, wide chemical and electrochemical stability, and good mechanical properties. Herein, we report the precise synthesis, characterization, and use as single-ion SPE of a novel double PIL-based amphiphilic diblock copolymer (BCP), i.e. where all monomer units are of N-vinyl-imidazolium-type, with triethylene glycol pendant groups in the first block, and a statistical distribution of N-vinyl-3-ethyl- and N-vinyl-3-perfluorooctyl-imidazolium bromides in the second block. BCP synthesis is achieved directly in water by a one-pot process, following the principle of the cobalt-mediated radical polymerization-induced self-assembly (CMR-PISA). A subsequent anion exchange reaction substituting bis(trifluoromethylsulfonyl)imide (Tf2N-) for bromide (Br-) counter-anions leads to the targeted PIL BCPs with two different lengths of the first block. They demonstrate ionic conductivity σDC = 1-3 10-7 S cm-1, as determined by broadband dielectric spectroscopy at 30 °C (under anhydrous conditions), and form free standing films with mechanical properties suited for SPE applications with Young’s modulus of 3.8 MPa and elongation at break of 250 % as determined by stress/strain experiments. [less ▲]

Detailed reference viewed: 73 (2 ULiège)
Full Text
Peer Reviewed
See detailMultiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry
Haler, Jean ULiege; Far, Johann ULiege; Aqil, Abdelhafid ULiege et al

in Journal of the American Society for Mass Spectrometry (2017), 28(11), 24922499

Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped ... [more ▼]

Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,...). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. [less ▲]

Detailed reference viewed: 72 (35 ULiège)
Full Text
Peer Reviewed
See detailSurface- and redox-active multifunctional polyphenol-derived poly(ionic liquid)s: controlled synthesis and characterization
Patil, Nagaraj ULiege; Cordella, Daniela; Aqil, Abdelhafid ULiege et al

in Macromolecules (2016), 49(20), 7676-7691

Combining the redox activity and remarkable adhesion propensity of polyphenols (such as catechol or pyrogallol) with the numerous tunable properties of poly(ionic liquid)s (PILs) is an attractive route to ... [more ▼]

Combining the redox activity and remarkable adhesion propensity of polyphenols (such as catechol or pyrogallol) with the numerous tunable properties of poly(ionic liquid)s (PILs) is an attractive route to design inventive multifunctional macro-molecular platforms. In this contribution, we describe the first synthesis of a novel family of structurally well-defined PILs functionalized with catechol/pyrogallol/phenol pendants by organometallic-mediated radical polymerization (OMRP) using an alkyl−cobalt(III) complex as initiator and mediating agent. The living character of the chains is also exploited to produce di-and triblock PILs, and the facile counteranion exchange reactions afforded a library of PILs-bearing free phenol/catechol/pyrogallol moieties. Electrochemical investigations of catechol/pyrogallol-derived PILs in aqueous medium demonstrated the characteristic catechol to o-quinone transformations, whereas, quasi-reversible doping/undoping with supporting electrolyte cations (Li + /tetrabutylammonium +) has been observed in organic media, suggesting a bright future for this new family of redox-active PILs as cathode material for secondary energy storage devices. Also, pendant catechol/pyrogallol groups mediated sustained anchoring onto the gold surface conferred PILs properties to the interface. As a proof-of-concept, both the adsorption and inhibition of proteins on polymer modified surfaces have been demonstrated in real time using the quartz crystal microbalance with dissipation technique. The exquisite physicochemical tunability of these innovative surface-and redox-active PILs makes them excellent candidates for a broad range of potential applications, including " smart surfaces " and electrochemical energy storage devices. [less ▲]

Detailed reference viewed: 46 (12 ULiège)
See detailDesign and synthesis of Fe2O3 nanoparticles/N-doped porous carbon structures as high performance electrode for lithium ion battery
Alkarmo, Walid ULiege; Ouhib, Farid ULiege; Aqil, Abdelhafid ULiege et al

Poster (2016, October 13)

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous ... [more ▼]

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous frameworks have emerged as attractive materials for various electrochemical energy storage/conversion devices, including Li-ion batteries (LIBs), Li−S batteries, supercapacitors and fuel cells. In this context, a hierarchically structured macro- and mesoporous N-doped carbon with dispersed Fe2O3 nanoparticles (NDC@Fe2O3) is prepared by thermal treatment of a novel composite composed by PMMA particles decorated by graphene oxide (GO), PPy and iron salts. The NDC@Fe2O3 composite exhibited high surface area with a hierarchical pores structure. The combination of Fe2O3 nanoparticles with porous carbon to form hybrid anode has been an efficient way to maintain the electronic integrity of the whole electrode since the carbon acts as a buffer layer to accommodate the volume variation and to provide multidimensional electron transport pathways during the charge/discharge process. [less ▲]

Detailed reference viewed: 186 (15 ULiège)
See detailPILs as a new active material for radical organic batteries
Aqil, Mohamed ULiege; Ouhib, Farid ULiege; Aqil, Abdelhafid ULiege et al

Poster (2016, October 13)

Detailed reference viewed: 24 (2 ULiège)
See detailPAI Annual Meeting
Ouhib, Farid ULiege; Aqil, Abdelhafid ULiege; Dirani, Ali et al

Poster (2016, September 12)

Detailed reference viewed: 14 (2 ULiège)
Full Text
Peer Reviewed
See detailTransparent superhydrophobic coatings from amphiphilic-fluorinated block copolymers synthesized by aqueous polymerization-induced self-assembly
Ouhib, Farid ULiege; Dirani, Ali; Aqil, Abdelhafid ULiege et al

in Polymer Chemistry (2016), 7(24), 3998-4003

Preparation of transparent and superhydrophobic coatings by co-deposition of an aqueous solution of an amphiphilic fluorinated block copolymer (FBC) with silica particles was developped. Spin- coating of ... [more ▼]

Preparation of transparent and superhydrophobic coatings by co-deposition of an aqueous solution of an amphiphilic fluorinated block copolymer (FBC) with silica particles was developped. Spin- coating of this aqueous solution onto glass followed by an appropriate thermal treatment promotes the self-assembly of the hybrid material with the formation of superhydrophobic, robust and transparent coatings. [less ▲]

Detailed reference viewed: 48 (6 ULiège)
See detailPolymers bearing pendant catechols for organic electrode-active materials in lithium-ion batteries
Patil, Nagaraj ULiege; Cordella, Daniela ULiege; Aqil, Abdelhafid ULiege et al

Conference (2016, May 23)

Herein, we describe the synthesis and organometallic-mediated radical polymerization of 1-vinyl-3-alkylimidazolium-type monomers bearing pendant catechols in its protected version, using a presynthesized ... [more ▼]

Herein, we describe the synthesis and organometallic-mediated radical polymerization of 1-vinyl-3-alkylimidazolium-type monomers bearing pendant catechols in its protected version, using a presynthesized alkyl‒cobalt(III) complex as monocomponent initiator/mediating agent in a controlled fashion. A neat post-polymerization deprotection, followed by facile anion exchange reactions afforded a novel multi-functional poly(ionic liquids)-bearing free catechol functionalities. Prototype Lithium-ion battery, consisting a binder- and current collector-free electroactive polymer-supported buckypaper as the composite cathode, delivered an impressive specific capacity in the range of 199–230 mA h g‒1, relatively at high discharge potential = 3.2–3.4 V (vs Li/Li+), as calculated from CV and galvanostatic charge-discharge experiments. The superior electrochemical performance of the composite cathode consisting of PIL-catechols active-material, in comparison with poly(dopaminde acrylamide) is ascribed to the intrinsic Li-ion conductivity and enhanced surface activity of the imidazolium backbone with TFSI counteranion, compared to the acrylamide backbone. [less ▲]

Detailed reference viewed: 134 (5 ULiège)
See detailFe2O3 nanoparticle-functionalized N-doped carbon with interconnected, hierarchical porous structures as high-performance electrode for lithium ion batteries
Alkarmo, Walid ULiege; Ouhib, Farid ULiege; Aqil, Abdelhafid ULiege et al

Poster (2016, May 23)

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous ... [more ▼]

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous frameworks have emerged as attractive materials for various electrochemical energy storage/conversion devices, including Li-ion batteries (LIBs), Li−O2 batteries, Li−S batteries, supercapacitors, and fuel cells. A hierarchically structured macro- and mesoporous N-doped carbon with dispersed Fe2O3 nanoparticles (NDC@Fe2O3) is prepared by thermal treatment of a novel composite composed by PMMA particles decorated by graphene oxide (GO), PPy and iron salts. The NDC@Fe2O3 composite exhibited high surface area with a hierarchical pores structure. Integrated as a lithium ion battery anode, NDC@Fe2O3 exhibited high reversible capacity of 930 mA h/g over 200 cycles. The combination of Fe2O3 nanoparticles with porous carbon to form hybrid anode has been an efficient way to maintain the electronic integrity of the whole electrode since the carbon acts as a buffer layer to accommodate the volume variation and to provide multidimensional electron transport pathways during the charge/discharge process. [less ▲]

Detailed reference viewed: 391 (12 ULiège)
See detailChitosan-based nanofibers mats for tissue engineering
Aqil, Abdelhafid ULiege; Croisier, Florence ULiege; Colige, Alain ULiege et al

Conference (2016, May)

Polymer hydrogels resemble the natural living tissue due to their high water content and soft consistency. They find many applications in the design and production of contact and intraocular lenses ... [more ▼]

Polymer hydrogels resemble the natural living tissue due to their high water content and soft consistency. They find many applications in the design and production of contact and intraocular lenses, biosensors membranes, matrices for repairing and regenerating a wide diversity of tissues and organs. Polysaccharides such as chitosan and hyaluronic acid based hydrogels have shown a great potential for biomedical and pharmaceutical applications, on account of their remarkable compatibility with physiological medium. Besides, it is degraded in a physiological environment into non-toxic products, which make them outstanding candidates for short- to medium-term applications, especially for tissue engineering. In this respect, the preparation of nanometric fibers mats based on this polysaccharide are highly interesting as such structure mimics the one of skin extracellular matrix. Such nanofibrous materials can be prepared by electrospinning (Figure 1). This technique uses a high voltage to create an electrically charged jet of polymer solution to obtain polymer fibers ranging from nanometers to a few microns in diameter. We thus have investigated strategies allowing to generate chitosan based nanofiber mats exhibiting a mechanical resistance strong enough to be easily handled while keeping the peculiar features of chitosan hydrogels favoring the interaction with cells and soft tissues to provide efficient tissue reconstruction. In a first strategy, polysaccharide-based nanofibers with a multilayered structure were prepared by combining electrospinning (ESP) and layer-by-layer (LBL) deposition techniques. Elastic nanofibers bearing charges at their surface were firstly prepared by electrospinning poly(ε-caprolactone) (PCL) with a polyelectrolyte precursor. After activation by adjusting the pH, the layer-by-layer deposition of chitosan and hyaluronic acid, can be used to coat the electrospun fibers. A multilayered structure is then achieved by alternating the deposition of the positively charged chitosan with the deposition of a negatively charged polyelectrolyte. These novel polysaccharide-coated PCL fiber mats remarkably combine the mechanical resistance typical of the core material (PCL) – particularly in the hydrated state –, with the surface properties of chitosan. Besides, crosslinked nanofibrous mats of chitosan and polyethylene oxide blends, were successfully prepared via electrospinning technique followed by heat mediated chemical crosslinking. This chemical cross-linking allows adjusting the mechanical resistance of the mats while preserving their biocompatibility. In both cases, the control of the nanofiber structure offered by the electrospinning technology, makes the developed processes very promising to precisely design biomaterials for tissue engineering. Preliminary cell culture tests corroborate the potential use of such systems in wound healing applications. [less ▲]

Detailed reference viewed: 820 (17 ULiège)
Full Text
Peer Reviewed
See detailA new design of organic radical batteries (ORBs): carbon nanotube buckypaper electrode functionalized by electrografting
Aqil, Abdelhafid ULiege; Vlad, Alexandru; Piedboeuf, Marie-Laure ULiege et al

in Chemical Communications (2015), 51(45), 9301-9304

A novel hybridmaterial displaying a fast and reversible charge storage capability is prepared by electrografting of an alkoxyamine-bearing acrylate onto a carbon nanotube buckypaper, followed by the quan ... [more ▼]

A novel hybridmaterial displaying a fast and reversible charge storage capability is prepared by electrografting of an alkoxyamine-bearing acrylate onto a carbon nanotube buckypaper, followed by the quan- titative generation of an electroactive polynitroxide. [less ▲]

Detailed reference viewed: 95 (16 ULiège)
See detailControlled synthesis of multi-functional polymers bearing pendant catechols for surface modifications
Patil, Nagaraj ULiege; Aqil, Abdelhafid ULiege; Jérôme, Christine ULiege et al

Poster (2015, June)

Poly(ethylene glycol) (PEG)-based polymers have been widely employed in anti-fouling coating applications due to their robust bio-relevant properties including water solubility and biocompatibility ... [more ▼]

Poly(ethylene glycol) (PEG)-based polymers have been widely employed in anti-fouling coating applications due to their robust bio-relevant properties including water solubility and biocompatibility. However, limited by its poor adhesion towards surfaces, demands an addition modification strategies. Mussel adhesive proteins (MAPs) are potential models for adhesive polymers, which exhibits underwater adhesion towards dissimilar materials under environmentally challenging conditions. Most often experimentally simple, but structurally complex poly(dopamine) has been used as an analogues of MAPs for metal chelation, cross-linking and surface binding purposes. Inspired by MAPs, we have developed catechol-bearing copolymers for surface adhesion of stainless steel. This study describes the synthesis and reversible addition−fragmentation chain transfer (RAFT) polymerization of mussel-inspired acetonide-protected dopamine (meth)acrylamide monomers (ADA and ADMA). A series of well-defined P(PEGAm-b-ADAn) and P(ADMAn-b-PEGMAm) copolymers across a range of molar masses (13−42 kg/mol) with low molar mass dispersities (Đ = 1.12−1.25) were reported for the first time. Post polymerization TFA treatment yields block copolymers bearing free –catechol units in quantitative yields (>95%). The self-assembling nature of amphiphilic block-copolymers was studied by 1H-NMR, DLS and TEM. Surface functionalization and anti-fouling experiments were performed in real time using quartz crystal microbalance coupled with dissipation (QCM-D). The copolymer upon oxidation yields reactive quinones, which can be exploited to cross-link with chitosan (also, polymers with free –NH2 and –SH groups), thereby producing nano(macro)gels. In general, these novel class of block copolymeric ligand systems can be foreseen as versatile ingredients in material chemistry to obtain biocompatible multifunctional systems, benefited by high water solubility with inherent stealth ability and protein-repellency, as well as effective chelating groups, and may find application for a variety of biomedical fields, of which we have illustrated an important example. [less ▲]

Detailed reference viewed: 102 (4 ULiège)
Full Text
Peer Reviewed
See detailDual stimuli-responsive coating designed through layer-by-layer assembly of PAA-b-PNIPAM block copolymers for the control of protein adsorption
Osypova, Alina; Magnin, Delphine; Sibret, Pierre ULiege et al

in Soft Matter (2015), 11(41), 8154-8164

In this paper, we describe the successful construction, characteristics and interaction with proteins of stimuli-responsive thin nanostructured films prepared by layer-by-layer (LbL) sequential assembly ... [more ▼]

In this paper, we describe the successful construction, characteristics and interaction with proteins of stimuli-responsive thin nanostructured films prepared by layer-by-layer (LbL) sequential assembly of PNIPAM-containing polyelectrolytes and PAH. PAA-b-PNIPAM block copolymers were synthesized in order to benefit from (i) the ionizable properties of PAA, to be involved in the LbL assembly, and (ii) the sensitivity of PNIPAM to temperature stimulus. The impact of parameters related to the structure and size of the macromolecules (their molecular weight and the relative degree of polymerization of PAA and PNIPAM), and the interaction with proteins under physico-chemical stimuli, such as pH and temperature, are carefully investigated. The incorporation of PAA-b-PNIPAM into multilayered films is shown to be successful whatever the block copolymer used, resulting in slightly thicker films than the corresponding (PAA/PAH)n film. Importantly, the protein adsorption studies demonstrate that it is possible to alter the adsorption behavior of proteins on (PAA-b-PNIPAM/PAH)n surfaces by varying the temperature and/or the pH of the medium, which seems to be intimately related to two key factors: (i) the ability of PNIPAM units to undergo conformational changes and (ii) the structural changes of the film made of weak polyelectrolytes. The simplicity of construction of these PNIPAM block copolymer-based LbL coatings on a large range of substrates, combined with their highly tunable features, make them ideal candidates to be employed for various biomedical applications requiring the control of protein adsorption. [less ▲]

Detailed reference viewed: 26 (6 ULiège)