References of "Absil, Philippe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDifferential effects of testosterone on neuronal populations and their connections in a sensorimotor brain nucleus controlling song production in songbirds: a manganese enhanced-magnetic resonance imaging study
Van Meir, V.; Verhoye, M.; Absil, Philippe ULg et al

in Neuroimage (2004), 21(3), 914-923

Nucleus HVC (formerly called high vocal center) of songbirds contains two types of projecting neurons connecting HVC respectively to the nucleus robustus archistriatalis, RA, or to area X. These two ... [more ▼]

Nucleus HVC (formerly called high vocal center) of songbirds contains two types of projecting neurons connecting HVC respectively to the nucleus robustus archistriatalis, RA, or to area X. These two neuron classes exhibit multiple neurochemical differences and are differentially replaced by new neurons during adult life: high rates of neuronal replacement are observed in RA-projecting neurons only. The activity of these two types of neurons may also be modulated differentially by steroids. We analyzed by magnetic resonance imaging the effect of testosterone on the volume of RA and area X and on the dynamics of Mn2+ accumulation in RA and area X of female starlings that had been injected with MnCl2 through a permanent cannula implanted in HVC. Repeated visualization 6 weeks apart (before and after testosterone treatment) identified a volume increase of both nuclei in testosterone-treated birds associated with a concomitant decrease in controls. Following testosterone treatment, the total amount of Mn2+ transported to RA and area X increased but the dynamics of accumulation, reflecting in part the activity of HVC neurons, was specifically altered in area X but not in RA. These data indicate that testosterone differentially affects the RA- and area X-projecting neurons in HVC. Manganese-enhanced magnetic resonance imaging (ME-MRI) thus provides repeated measures of connected brain areas and demonstrates testosterone-dependent regionally specific changes in brain activity and functional connectivity. The slow time scales investigated by this technique (compared to functional MRI) appear ideally suited for characterizing slow processes such as those involved in brain plasticity and learning. (C) 2004 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 67 (10 ULg)
Full Text
Peer Reviewed
See detailEffect of age and testosterone on autumnal neurogenesis in male European starlings (Sturnus vulgaris)
Absil, Philippe ULg; Pinxten, R.; Balthazart, Jacques ULg et al

in Behavioural Brain Research (2003), 143(1), 15-30

The male European starling (Sturnus vulgaris) is an open-ended learner that increases its repertoire throughout life. In parallel, the volume of hi-h vocal center (HVC) is larger in older birds than in ... [more ▼]

The male European starling (Sturnus vulgaris) is an open-ended learner that increases its repertoire throughout life. In parallel, the volume of hi-h vocal center (HVC) is larger in older birds than in yearlings. We labeled with the thymidine analog 5-bromodeoxyuridine (BrdU) the cells that are generated during the fall in the brain of adult males that were 2 or more years old and in yearling males that were treated with exogenous testosterone (T) or kept intact before BrdU administration. In all subjects, the singing rate was recorded and BrdU-Iabeled cells were quantified in HVC, in proliferative areas of the ventricular zone (VZ) and in auditory regions. BrdU-containing cells were observed in all brain regions investigated. They were significantly more numerous in the VZ of the T-treated yearlings than in any other group. In older birds, a reduced number of labeled cells was specifically observed in the VZ close to the anterior commissure. No group difference was detected in auditory processing areas or in HVC. These data show for the first time a positive influence of T on the production of new cells at the VZ level in a male songbird and a decrease of this process with age. Furthermore, in T-treated birds, a correlation was observed between the HVC volume and the number of differentiated (round) BrdU-positive cell numbers in HVC on the one hand and song rate on another hand supporting the notion that singing activity is causally related to the T-induced growth of this song control nucleus. (C) 2003 Elsevier Science B.V. All rights reserved. [less ▲]

Detailed reference viewed: 48 (2 ULg)
Full Text
Peer Reviewed
See detailEffects of testosterone on Reelin expression in the brain of male European starlings
Absil, Philippe ULg; Pinxten, R.; Balthazart, Jacques ULg et al

in Cell & Tissue Research (2003), 312(1), 81-93

Reelin, a large glycoprotein defective in reeler mice, is assumed to determine the final location of migrating neurons in the developing brain. We studied the expression of Reelin in the brain of adult ... [more ▼]

Reelin, a large glycoprotein defective in reeler mice, is assumed to determine the final location of migrating neurons in the developing brain. We studied the expression of Reelin in the brain of adult male European starlings that had been treated or not with exogenous testosterone. Reelin-immunoreactive cells and fibers were widely distributed in the forebrain including areas in and around the song control nucleus, HVC. No labeling was detected in other song control nuclei with the exception of nucleus uvaeformis, which was delineated by a dense cluster of Reelin-immunoreactive perikarya. Reelin is thus expressed in areas incorporating new neurons in adulthood, such as HVC. Reelin expression was sharply decreased by testosterone in HVC, nucleus uvaeformis and dorsal thalamus but not in other brain regions. These results are consistent with the idea that seasonal changes in Reelin expression modulate the incorporation of neurons within HVC. The presence of Reelin in other brain areas that do not incorporate new neurons in adulthood indicates, however, that this protein must play other unrelated roles in the adult brain. Additional studies should now be carried out to determine the specific role played by this protein in the seasonal plasticity of the songbird brain. [less ▲]

Detailed reference viewed: 32 (1 ULg)
Full Text
Peer Reviewed
See detailChanges in the arginine-vasopressin immunoreactive systems in male mice lacking a functional aromatase gene
Plumari, L.; Viglietti-Panzica, C.; Allieri, F. et al

in Journal of Neuroendocrinology (2002), 14(12), 971-978

In male rodents, the arginine-vasopressin-immunoreactive (AVP-ir) neurones of the bed nucleus of the stria terminalis (BNST) and medial amygdala are controlled by plasma testosterone levels (decreased ... [more ▼]

In male rodents, the arginine-vasopressin-immunoreactive (AVP-ir) neurones of the bed nucleus of the stria terminalis (BNST) and medial amygdala are controlled by plasma testosterone levels (decreased after castration and restored by exogenous testosterone). AVP transcription in these nuclei is increased in adulthood by a synergistic action of the androgenic and oestrogenic metabolites of testosterone and, accordingly, androgen and oestrogen receptors are present in both BNST and medial amygdala. We used knockout mice lacking a functional aromatase enzyme (ArKO) to investigate the effects of a chronic depletion of oestrogens on the sexually dimorphic AVP system. Wild-type (WT) and ArKO male mice were perfused 48 h after an i.c.v. colchicine injection and brain sections were then processed for AVP immunocytochemistry. A prominent decrease (but not a complete suppression) of AVP-ir structures was observed in the BNST and medial amygdala of ArKO mice by comparison with the WT. Similarly, AVP-ir fibres were reduced in the lateral septum of ArKO mice and but not in the medial preoptic area, a region where the AVP system is not sexually dimorphic in rats. No change was detected in the supraoptic and suprachiasmatic nuclei. However, a decrease in AVP-ir cell numbers was however, detected in one subregion of the paraventricular nucleus. These data support the hypothesis that the steroid-sensitive sexually dimorphic AVP system of the mouse forebrain is mainly under the control of aromatized metabolites of testosterone. [less ▲]

Detailed reference viewed: 37 (1 ULg)
Full Text
Peer Reviewed
See detailThe medial preoptic nucleus receives vasotocinergic inputs in male quail: a tract-tracing and immunocytochemical study
Absil, Philippe ULg; Papello, M.; Viglietti-Panzica, C. et al

in Journal of Chemical Neuroanatomy (2002), 24(1), 27-39

The sexually dimorphic testosterone-sensitive medial preoptic nucleus (POM) of quail can be identified by the presence of a dense network of vasotocinergic fibers. This innervation is sexually ... [more ▼]

The sexually dimorphic testosterone-sensitive medial preoptic nucleus (POM) of quail can be identified by the presence of a dense network of vasotocinergic fibers. This innervation is sexually differentiated (present in males only) and testosterone sensitive. The origin of these fibers has never been formally identified although their steroid sensitivity Suggests that they originate in parvocellular vasotocinergic neurons that are found in quail only in the medial part of the bed nucleus striae terminalis (BSTm) and in smaller numbers within the POM itself. We report here that following injections of a retrograde tracer into the POM of male quail, large populations of retrogradely labeled cells can be identified in the BSTm. The POM also receives afferent projections from magnocellular vasotocinergic nuclei, the supraoptic and paraventricular nuclei. Double labeling for vasotocin immunoreactivity of the retrogradely labeled sections failed however to clearly identify magnocellular vasotocin-immunoreactive cells that were retrogradely labeled from POM. In contrast a substantial population of vasotocin-immunoreactive neurons in the BSTm contained tracer retrogradely transported from the POM. These data therefore demonstrate that a significant part of the vasotocinergic innervation of the quail POM originates in the medial part of the BST. An intrinsic innervation could however also contribute to this network. This interaction between BSTm and POM could play a key role in the control of male-typical sexual behavior and in its sex dimorphism in quail. (C) 2002 Elsevier Science B.V. All rights reserved. [less ▲]

Detailed reference viewed: 19 (0 ULg)
Full Text
Peer Reviewed
See detailIn vivo manganese-enhanced magnetic resonance imaging reveals connections and functional properties of the songbird vocal control system
Van der Linden, A.; Verhoye, M.; Van Meir, V. et al

in Neuroscience (2002), 112(2), 467-474

Injection of manganese (Mn2+), a paramagnetic tract tracing agent and calcium analogue, into the high vocal center of starlings labeled within a few hours the nucleus robustus archistriatalis and area X ... [more ▼]

Injection of manganese (Mn2+), a paramagnetic tract tracing agent and calcium analogue, into the high vocal center of starlings labeled within a few hours the nucleus robustus archistriatalis and area X as observed by in vivo magnetic resonance imaging. Structures highlighted by Mn2+ accumulation assumed the expected tri-dimensional shape of the nucleus robustus archistriatalis and area X as identified by classical histological or neurochemical methods. The volume of these nuclei could be accurately calculated by segmentation of the areas highlighted by Mn2+. Besides confirming previously established volumetric sex differences, Mn2+ uptake into these nuclei revealed new functional sex differences affecting Mn2+ transport. A faster transport was observed in males than in females and different relative amounts of Mn2+ were transported to nucleus robustus archistriatalis and area X in males as compared to females. This new in vivo approach, allowing repeated measures, opens new vistas to study the remarkable seasonal plasticity in size and activity of song-control nuclei and correlate neuronal activity with behavior. It also provides new insights on in vivo axonal transport and neuronal activity in song-control nuclei of oscines. (C) 2002 IBRO. Published by Elsevier Science Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 35 (1 ULg)
Full Text
Peer Reviewed
See detailEffects of lesions of nucleus taeniae on appetitive and consummatory aspects of male sexual behavior in Japanese quail
Absil, Philippe ULg; Braquenier, Jean-Baptiste ULg; Balthazart, Jacques ULg et al

in Brain, Behavior & Evolution (2002), 60(1), 13-35

Neurochemical, hodological and functional criteria suggest that the nucleus taeniae and parts of the adjacent archistriatum represent the avian homologue of parts of the mammalian amygdaloid complex. It ... [more ▼]

Neurochemical, hodological and functional criteria suggest that the nucleus taeniae and parts of the adjacent archistriatum represent the avian homologue of parts of the mammalian amygdaloid complex. It has been proposed in particular that the nucleus taeniae is the homologue of the mammalian medial amygdala. In male quail, relatively large lesions to the posterior/medial archistriatum selectively decrease the expression of appetitive sexual behavior in a manner reminiscent of similar manipulations involving the medial amygdala in mammals. We investigated the effects of discrete lesions restricted to nucleus taeniae and of lesions to an adjacent part of the archistriaturn (pars intermedium ventralis, Alv) on the expression of appetitive (ASB) and consummatory (CSB) aspects of male sexual behavior. ASB was measured by a learned social proximity response (after copulation a male quail stands in front of a window providing visual access to a female) and by the frequency of rhythmic cloacal sphincter movements. CSB was assessed by the frequency of mount attempts (MA) and cloacal contact movements (CCM). Lesions confined to nucleus taeniae and to Alv did not influence the acquisition or the maintenance of the two responses indicative of ASB. In contrast, lesions of nucleus taeniae significantly increased the occurrence frequencies of MA and CCM when administered before the beginning of behavior testing and increased the frequency of MA only when performed on sexually experienced subjects. No effect of Alv lesions could be detected. The discrepancy between these results and previous experiments in quail might reflect procedural differences, but more probably differences in locations of the lesions that were restricted in the current study to the anterior part of taeniae. Those in the Thompson study were in the posterior part of this nucleus. These findings indicate that there is a larger degree of functional heterogeneity in the nucleus taeniae than previously thought. The effects of taeniae lesions suggest that this nucleus, similar to the medial amygdala in mammals, might be implicated in the control of sexual satiety. Copyright (C) 2002 S. Karger AG, Basel. [less ▲]

Detailed reference viewed: 29 (2 ULg)
Full Text
Peer Reviewed
See detailThe control of preoptic aromatase activity by afferent inputs in Japanese quail
Absil, Philippe ULg; Baillien, M.; Ball, G. F. et al

in Brain Research Reviews (2001), 37(1-mars Sp. Iss. SI), 38-58

This review summarizes current knowledge on the mechanisms that control aromatase activity in the quail preoptic area, a brain region that plays a key role in the control of reproduction. Aromatase and ... [more ▼]

This review summarizes current knowledge on the mechanisms that control aromatase activity in the quail preoptic area, a brain region that plays a key role in the control of reproduction. Aromatase and aromatase mRNA synthesis in the preoptic area are enhanced by testosterone and its metabolite estradiol, but estradiol receptors of the alpha subtype are not regularly colocalized with aromatase. Estradiol receptors of the beta subtype are present in the preoptic area but it is not yet known whether these receptors are colocalized with aromatase. The regulation by estrogen of aromatase activity may be, in part, trans-synaptically mediated, in a manner that is reminiscent of the ways in which steroids control the activity of gonadotropic hormone releasing hormone neurons, Aromatase-immunoreactive neurons are surrounded by dense networks of vasotocin-immunoreactive and tyrosine hydroxylase-immunoreactive fibers and punctate structures. These inputs are in part steroid-sensitive and could therefore mediate the effects of steroids on aromatase activity. In vivo pharmacological experiments indicate that catecholaminergic depletions significantly affect aromatase activity presumably by modulating aromatase transcription. In addition, in vitro studies on brain homogenates or on preoptic-hypothalamic explants show that aromatase activity can be rapidly modulated by a variety of dopaminergic compounds. These effects do not appear to be mediated by the membrane dopamine receptors and could involve changes in the phosphorylation state of the enzyme, Together, these results provide converging evidence for a direct control of aromatase activity by catecholamines consistent with the anatomical data indicating the presence of a catecholaminergic innervation of aromatase cells. These dopamine-induced changes in aromatase activity are observed after several hours or days and presumably result from changes in aromatase transcription but rapid non-genomic controls have also been identified. The potential significance of these processes for the physiology of reproduction is critically evaluated. (C) 2001 Elsevier Science BY. All rights reserved. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detailPreoptic Aromatase Cells Project to the Mesencephalic Central Gray in the Male Japanese Quail (Coturnix Japonica)
Absil, Philippe ULg; Riters, L. V.; Balthazart, Jacques ULg

in Hormones & Behavior (2001), 40(3), 369-83

Previous tract-tracing studies demonstrated the existence of projections from the medial preoptic nucleus (POM) to the mesencephalic central gray (GCt) in quail. GCt contains a significant number of ... [more ▼]

Previous tract-tracing studies demonstrated the existence of projections from the medial preoptic nucleus (POM) to the mesencephalic central gray (GCt) in quail. GCt contains a significant number of aromatase-immunoreactive (ARO-ir) fibers and punctate structures, but no ARO-ir cells are present in this region. The origin of the ARO-ir fibers of the GCt was investigated here by retrograde tract-tracing combined with immunocytochemistry for aromatase. Following injection of fluorescent microspheres in GCt, retrogradely labeled cells were found in a large number of hypothalamic and mesencephalic areas and in particular within the three main groups of ARO-ir cells located in the POM, the ventromedial nucleus of the hypothalamus, and the bed nucleus striae terminalis. Labeling of these cells for aromatase by immunocytochemistry demonstrated, however, that aromatase-positive retrogradely labeled cells are observed almost exclusively within the POM. Double-labeled cells were abundant in both the rostral and caudal parts of the POM and their number was apparently not affected by the location of the injection site within GCt. At both rostro-caudal levels of the POM, ARO-ir retrogradely labeled cells were, however, more frequent in the lateral than in the medial POM. These data indicate that ARO-ir neurons located in the lateral part of the POM may control the premotor aspects of male copulatory behavior through their projection to GCt and suggest that GCt activity could be affected by estrogens released from the terminals of these ARO-ir neurons. [less ▲]

Detailed reference viewed: 24 (2 ULg)
Full Text
Peer Reviewed
See detailEffects of lesions of the medial preoptic nucleus on the testosterone-induced metabolic changes in specific brain areas in male quail
Balthazart, Jacques ULg; Stamatakis, A.; Bacola, S. et al

in Neuroscience (2001), 108(3), 447-466

The effects of bilateral lesions of the medial preoptic nucleus in association with testosterone on the metabolic activity in discrete brain regions was studied quantitatively by the in vivo ... [more ▼]

The effects of bilateral lesions of the medial preoptic nucleus in association with testosterone on the metabolic activity in discrete brain regions was studied quantitatively by the in vivo autoradiographic 2-deoxyglucose method. Adult male quail were castrated and then left without hormone replacement therapy or treated with testosterone or treated with testosterone and submitted to a bilateral lesion of the medial preoptic nucleus, a brain region that plays a key role in the activation of male copulatory behavior by testosterone. Treatment for about 10 days with testosterone activated the expression of the full range of male sexual behaviors and these behaviors were completely suppressed by the medial preoptic nucleus lesions. Mapping of 2-deoxyglucose uptake revealed both increases and decreases of metabolic activity in discrete brain regions associated with the systemic treatment with testosterone as well as with the lesion of the medial preoptic nucleus. Testosterone affected the oxidative metabolism in brain areas that are known to contain sex steroid receptors (such as the nucleus taeniae and the paraventricular and ventromedial nuclei of the hypothalamus) but also in nuclei that are believed to be devoid of such receptors. Effects of testosterone in these nuclei may be indirect or reflect changes in terminals of axons originating in steroid-sensitive areas. Bilateral medial preoptic nucleus lesions affected 2-deoxyglucose uptake in a variety of brain regions. Some of these regions are known to be mono-synaptically connected to the medial preoptic nucleus. Metabolic depression in these areas may reflect retrograde changes in the neurons projecting to the damaged field. The metabolic changes identified in the present study confirm the prominent role of the preoptic area in the control of sexual behavior, show that changes in the physiology of the visual system represent one of the ways through which testosterone influences the occurrence of this behavior and demonstrate that the medial preoptic nucleus has marked effects on the metabolic activity in a variety of limbic and telencephalic structures. This study also indicates that the medial preoptic nucleus affects the activity of the area ventralis of Tsai, a dopaminergic area known to send projections to a variety of hypothalamic, thalamic and mesencephalic nuclei that are implicated in the control of male sexual behavior. These data therefore support the notion that the control of the dopaminergic activity in the area ventralis of Tsai by the medial preoptic nucleus represents one of the ways through which the medial preoptic area regulates male reproductive behavior. (C) 2001 IBRO. Published by Elsevier Science Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 42 (1 ULg)
Full Text
Peer Reviewed
See detailLocalization and Controls of Aromatase in the Quail Spinal Cord
Evrard, H.; Baillien, M.; Foidart, Agnès ULg et al

in Journal of Comparative Neurology (The) (2000), 423(4), 552-64

In adult male and female Japanese quail, aromatase-immunoreactive cells were identified in the spinal dorsal horns from the upper cervical segments to the lower caudal area. These immunoreactive cells are ... [more ▼]

In adult male and female Japanese quail, aromatase-immunoreactive cells were identified in the spinal dorsal horns from the upper cervical segments to the lower caudal area. These immunoreactive cells are located mostly in laminae I-III, with additional sparse cells being present in the medial part of lamina V and, at the cervical level exclusively, in lamina X around the central canal. Radioenzyme assays based on the measurement of tritiated water release confirmed the presence of substantial levels of aromatase activity throughout the rostrocaudal extent of the spinal cord. Contrary to what is observed in the brain, this enzyme activity and the number of aromatase-immunoreactive cells in five representative segments of the spinal cord are not different in sexually mature males or females and are not influenced in males by castration with or without testosterone treatment. The aromatase activity and the numbers of aromatase-immunoreactive cells per section are higher at the brachial and thoracic levels than in the cervical and lumbar segments. These experiments demonstrate for the first time the presence of local estrogen production in the spinal cord of a higher vertebrate. This production was localized in the sensory fields of the dorsal horn, where estrogen receptors have been identified previously in several avian and mammalian species, suggesting an implication of aromatase in the modulation of sensory (particularly nociceptive) processes. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailIdentification of the Origin of Catecholaminergic Inputs to Hvc in Canaries by Retrograde Tract Tracing Combined with Tyrosine Hydroxylase Immunocytochemistry
Appeltants, D.; Absil, Philippe ULg; Balthazart, Jacques ULg et al

in Journal of Chemical Neuroanatomy (2000), 18(3), 117-33

The telencephalic nucleus HVc (sometimes referred to as the high vocal center) plays a key role in the production and perception of birdsong. Although many afferent and efferent connections to this ... [more ▼]

The telencephalic nucleus HVc (sometimes referred to as the high vocal center) plays a key role in the production and perception of birdsong. Although many afferent and efferent connections to this nucleus have been described, it has been clear for many years, based on chemical neuroanatomical criteria, that there are projections to this nucleus that remain undescribed. A variety of methods including high performance liquid chromatography, immunohistochemistry and receptor autoradiography have identified high levels of catecholamine transmitters, the presence of enzymes involved in the synthesis of catecholamines such as tyrosine hydroxylase and a variety of catecholamine receptor sub-types in the HVc of several songbird species. However, no definitive projections to HVc have been described from cells groups known to synthesize catecholamines. These projections were analyzed in the present study by retrograde tract tracing combined with immunocytochemistry for tyrosine hydroxylase. The origin of the catecholaminergic inputs to HVc were determined based exclusively on birds in which injections of the retrograde tracer (latex fluospheres) were confined within the cytoarchitectonic boundaries of the nucleus. Retrogradely transported latex fluospheres were found mainly in cells of two dopaminergic nuclei, the mesencephalic central gray (A11) and, to a lesser extend, the area ventralis of Tsai (A10; homologous to the ventral tegmental area of mammals). A few retrogradely-labelled cells were also found in the noradrenergic nucleus subceruleus (A6). Most of these retrogradely-labelled cells were also tyrosine hydroxylase-positive. Other catecholaminergic nuclei were devoid of retrograde label. These data converge with others studies to indicate that HVc receives discrete dopaminergic and noradrenergic inputs. These inputs may influence the steroid regulation of HVc, attentional processes related to song and modulate sensory inputs to the song system. [less ▲]

Detailed reference viewed: 25 (4 ULg)
Full Text
Peer Reviewed
See detailEffects of Brain Testosterone Implants on Appetitive and Consummatory Components of Male Sexual Behavior in Japanese Quail
Riters, L. V.; Absil, Philippe ULg; Balthazart, Jacques ULg

in Brain Research Bulletin (1998), 47(1), 69-79

Aromatization of testosterone (T) into an estrogen is necessary for the activation of consummatory and appetitive sexual behavior in male Japanese quail. T action within the medial preoptic nucleus (POM ... [more ▼]

Aromatization of testosterone (T) into an estrogen is necessary for the activation of consummatory and appetitive sexual behavior in male Japanese quail. T action within the medial preoptic nucleus (POM) is necessary and sufficient to activate consummatory behavior, and some evidence suggests that POM might be involved in the control of appetitive behavior, but other brain regions, such as the bed nucleus of the stria terminalis (BST), an area that contains a dense population of aromatase-immunoreactive neurons, are also likely to be involved. This study was performed to assess the effects of stereotaxic T implants targeting either the POM or the BST on the activation of both components of sexual behavior in castrated male quail. Appetitive sexual behavior was measured by an acquired social proximity response in which a male will approach a window providing visual access to a female after the window has been repeatedly paired with physical access to a female and the possibility to freely interact with her. Rhythmic cloacal sphincter movements that are produced by the male when given visual access to a female were used as another measure of appetitive sexual behavior that does not appear to depend on sexual learning. The experiments confirmed that copulation is necessary for males to develop the social proximity response that is used to measure the appetitive sexual behavior. T implants in the POM activated both components of sexual behavior, suggesting that these components cannot be completely dissociated. In contrast, T implants located within the BST did not affect either component, but because implants in the BST did not activate copulatory behavior, these results do not preclude a role for BST in the expression of a previously acquired appetitive sexual behavior. [less ▲]

Detailed reference viewed: 24 (0 ULg)
Full Text
Peer Reviewed
See detailAppetitive and consummatory male sexual behavior in Japanese quail are differentially regulated by subregions of the preoptic medial nucleus
Balthazart, Jacques ULg; Absil, Philippe ULg; Gérard, Marie-Paule ULg et al

in Journal of Neuroscience (1998), 18(16), 6512-6527

Central testosterone aromatization is required for the activation of both appetitive (ASB) and consummatory (CSB) male sexual behavior in Japanese quail. There are two major clusters of aromatase ... [more ▼]

Central testosterone aromatization is required for the activation of both appetitive (ASB) and consummatory (CSB) male sexual behavior in Japanese quail. There are two major clusters of aromatase immunoreactive (ARO-ir) cells in the rostral forebrain; these outline the nucleus preopticus medialis (POM) and the nucleus striae terminalis (BST). We investigated the role of these nuclei in the regulation of ASB and CSB. Appetitive male sexual behavior was measured with the use of a learned social proximity procedure that quantified the time spent by a male in front of a window with a view of a female who was subsequently released into the cage, providing an opportunity for CSB. Males first acquired the response and then received bilateral electrolytic lesions aimed at the POM or BST, followed by retesting for ASB and CSB. Brain sections were stained for ARO-ir, and lesions to the two ARO-ir cell groups were quantitatively characterized. Lesions damaging the POM completely abolished CSB and also significantly decreased ASB. Lesions of the rostral BST had no effect on ASB, but moderately decreased CSB. Detailed anatomical analysis revealed that lesions of a subdivision of the POM just rostral to the anterior commissure specifically impair CSB, whereas lesions that are more rostral to this subdivision induce a severe deficit in ASB. These data indicate that different subregions of the POM regulate ASB and CSB in a somewhat independent manner, whereas the BST is only important in the regulation of CSB. [less ▲]

Detailed reference viewed: 22 (4 ULg)
Full Text
Peer Reviewed
See detailSystemic and Intracerebroventricular Injections of Vasotocin Inhibit Appetitive and Consummatory Components of Male Sexual Behavior in Japanese Quail
Castagna, C.; Absil, Philippe ULg; Foidart, Agnès ULg et al

in Behavioral Neuroscience (1998), 112(1), 233-50

The authors investigated the behavioral actions of vasotocin (VT) in castrated testosterone-treated male Japanese quail. The appetitive and consummatory components of sexual behavior as well as the ... [more ▼]

The authors investigated the behavioral actions of vasotocin (VT) in castrated testosterone-treated male Japanese quail. The appetitive and consummatory components of sexual behavior as well as the occurrence frequency of crows were inhibited, in a dose-dependent manner, by injections of VT. The authors observed opposite effects after injection of the V1 receptor antagonist, dPTyr(Me)AVP. Lower doses of VT were more active after central than after systemic injection, and effects of systemic injections of VT were blocked by a central injection of dPTyr(Me)AVP. The behavioral inhibition was associated with a modified diuresis after systemic but not central injection. These results provide direct evidence that VT affects male sexual behavior in quail by a direct action on the brain independent of its peripheral action on diuresis. [less ▲]

Detailed reference viewed: 36 (0 ULg)
Full Text
Peer Reviewed
See detailVasotocinergic Innervation of Areas Containing Aromatase-Immunoreactive Cells in the Quail Forebrain
Balthazart, Jacques ULg; Absil, Philippe ULg; Viglietti-Panzica, C. et al

in Journal of Neurobiology (1997), 33(1), 45-60

In the male quail forebrain, aromatase-immunoreactive (ARO-ir) elements are clustered within the sexually dimorphic medial preoptic nucleus (POM), nucleus striae terminalis (nST), nucleus accumbens (nAc ... [more ▼]

In the male quail forebrain, aromatase-immunoreactive (ARO-ir) elements are clustered within the sexually dimorphic medial preoptic nucleus (POM), nucleus striae terminalis (nST), nucleus accumbens (nAc), and ventromedial and tuberal hypothalamus. These ARO-ir cells are sensitive to testosterone and its metabolites: Their number and size increase after exposure to these steroids. The POM and lateral septum are also characterized by a dense vasotocinergic innervation that is also sensitive to testosterone. We analyzed here the anatomical relationships between ARO-ir elements and VT-ir fibers in the quail prosencephalon. Sequential staining for vasotocin, aromatase, or vasotocin plus aromatase was performed on adjacent 30-microm-thick cryostat sections. High concentrations of thin VT-ir fibers were observed within the POM, nST, lateral septum, periventricular mesencephalic central gray, and ventromedial and tuberal hypothalamus. There was a close correspondence between the extension of the ARO-ir cells and of VT-ir fibers. In double-labeled sections, all clusters of ARO-ir cells with the exception of those located in the nAc were embedded in a dense network of VT-ir fibers. Many of the VT-ir terminals appeared to end in the neuropile surrounding ARO-ir elements rather than directly on their cell bodies. This study supports the idea that the testosterone-dependent aromatase system is directly innervated by a testosterone-dependent peptidergic system. Aromatase-containing cells could therefore be modulated by steroids both directly and indirectly through the vasotocin system. Alternatively, this neuroanatomical arrangement may mediate the control of vasotocin synthesis or release by steroids. Functional studies demonstrate that both aromatase and vasotocin affect reproductive behavior in quail, and the present data provide anatomical support for the integration of these effects. [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailIdentification of Catecholaminergic Inputs to and Outputs from Aromatase-Containing Brain Areas of the Japanese Quail by Tract Tracing Combined with Tyrosine Hydroxylase Immunocytochemistry
Balthazart, Jacques ULg; Absil, Philippe ULg

in Journal of Comparative Neurology (The) (1997), 382(3), 401-28

In the quail brain, aromatase-immunoreactive (ARO-ir) neurons located in the medial preoptic nucleus (POM) and caudal paleostriatum ventrale/nucleus accumbens/nucleus striae terminalis complex (PVT/nAc ... [more ▼]

In the quail brain, aromatase-immunoreactive (ARO-ir) neurons located in the medial preoptic nucleus (POM) and caudal paleostriatum ventrale/nucleus accumbens/nucleus striae terminalis complex (PVT/nAc/nST) receive catecholaminergic inputs identified by the presence of tyrosine hydroxylase-immunoreactive (TH-ir) fibers and punctate structures. The origin of these inputs was analyzed by retrograde tracing with cholera toxin B subunit (CTB) or red latex fluospheres (RLF) combined with TH immunocytochemistry. CTB and RLF injected in the POM or PVT/nAc/nST were found in cells located in anatomically discrete areas in the telencephalon (hippocampus, septum, archistriatum), hypothalamus (many areas in periventricular position), thalamus, mesencephalon, and pons. In these last two regions, many retrogradely labeled cells were located in dopaminergic areas such as the retroruberal field (RRF), substantia nigra (SN), and area ventralis of Tsai (AVT) but also in noradrenergic cell groups such as the locus ceruleus and subceruleus. CTB tracing showed that most of these connections are bidirectional. Many retrogradely labeled cells contained TH-ir material. As a mean, 10-20% and 40-60% of the RLF-containing cells in the dopaminergic areas were TH-ir when RLF had been injected in the POM or PVT/nAc/nST, respectively. TH-ir cells projecting to the POM appeared to be mostly located in the periventricular hypothalamus and in AVT, whereas projections to the PVT/nAc/nST originated mainly in the SN (with significant contributions from the RRF and AVT). These data support the existence of functional relationships between aromatase and catecholamines. [less ▲]

Detailed reference viewed: 18 (1 ULg)
Full Text
Peer Reviewed
See detailDistribution of Aromatase-Immunoreactive Cells in the Forebrain of Zebra Finches (Taeniopygia Guttata): Implications for the Neural Action of Steroids and Nuclear Definition in the Avian Hypothalamus
Balthazart, Jacques ULg; Absil, Philippe ULg; Foidart, Agnès ULg et al

in Journal of Neurobiology (1996), 31(2), 129-48

Cells immunoreactive for the enzyme aromatase were localized in the forebrain of male zebra finches with the use of an immunocytochemistry procedure. Two polyclonal antibodies, one directed against human ... [more ▼]

Cells immunoreactive for the enzyme aromatase were localized in the forebrain of male zebra finches with the use of an immunocytochemistry procedure. Two polyclonal antibodies, one directed against human placental aromatase and the other directed against quail recombinant aromatase, revealed a heterogeneous distribution of the enzyme in the telencephalon, diencephalon, and mesencephalon. Staining was enhanced in some birds by the administration of the nonsteroidal aromatase inhibitor, R76713 racemic Vorozole) prior to the perfusion of the birds as previously described in Japanese quail. Large numbers of cells immunoreactive for aromatase were found in nuclei in the preoptic region and in the tuberal hypothalamus. A nucleus was identified in the preoptic region based on the high density of aromatase immunoreactive cells within its boundaries that appears to be homologous to the preoptic medial nucleus (POM) described previously in Japanese quail. In several birds alternate sections were stained for immunoreactive vasotocin, a marker of the paraventricular nucleus (PVN). This information facilitated the clear separation of the POM in zebra finches from nuclei that are adjacent to the POM in the preoptic area-hypothalamus, such as the PVN and the ventromedial nucleus of the hypothalamus. Positively staining cells were also detected widely throughout the telencephalon. Cells were discerned in the medial parts of the ventral hyperstriatum and neostriatum near the lateral ventricle and in dorsal and medial parts of the hippocampus. They were most abundant in the caudal neostriatum where they clustered in the dorsomedial neostriatum, and as a band of cells coursing along the dorsal edge of the lamina archistriatalis dorsalis. They were also present in high numbers in the ventrolateral aspect of the neostriatum and in the nucleus taeniae. None of the telencephalic vocal control nuclei had appreciable numbers of cells immunoreactive for aromatase within their boundaries, with the possible exception of a group of cells that may correspond to the medial part of the magnocellular nucleus of the neostriatum. The distribution of immunoreactive aromatase cells in the zebra finch brain is in excellent agreement with the distribution of cells expressing the mRNA for aromatase recently described in the finch telencephalon. This widespread telencephalic distribution of cells immunoreactive for aromatase has not been described in non-songbird species such as the Japanese quail, the ring dove, and the domestic fowl. [less ▲]

Detailed reference viewed: 51 (3 ULg)
Full Text
Peer Reviewed
See detailEffects of Testosterone and Its Metabolites on Aromatase-Immunoreactive Cells in the Quail Brain: Relationship with the Activation of Male Reproductive Behavior
Balthazart, Jacques ULg; Foidart, Agnès ULg; Absil, Philippe ULg et al

in Journal of Steroid Biochemistry & Molecular Biology (1996), 56(1-6 Spec No), 185-200

The enzyme aromatase converts testosterone (T) into 17 beta-estradiol and plays a pivotal role in the control of reproduction. In particular, the aromatase activity (AA) located in the preoptic area (POA ... [more ▼]

The enzyme aromatase converts testosterone (T) into 17 beta-estradiol and plays a pivotal role in the control of reproduction. In particular, the aromatase activity (AA) located in the preoptic area (POA) of male Japanese quail is a limiting step in the activation by T of copulatory behavior. Aromatase-immunoreactive (ARO-ir) cells of the POA are specifically localized within the cytoarchitectonic boundaries of the medial preoptic nucleus(POM), a sexually dimorphic and steroid-sensitive structure that is a necessary and sufficient site of steroid action in the activation of behavior. Stereotaxic implantation of aromatase inhibitors in but not around the POM strongly decreases the behavioral effects of a systemic treatment with T of castrated males. AA is decreased by castration and increased by aromatizable androgens and by estrogens. These changes have been independently documented at three levels of analysis: the enzymatic activity measured by radioenzymatic assays in vitro, the enzyme concentration evaluated semi-quantitatively by immunocytochemistry and the concentration of its messenger RNA quantified by reverse transcription-polymerase chain reaction (RT-PCR). These studies demonstrate that T acting mostly through its estrogenic metabolites regulates brain aromatase by acting essentially at the transcriptional level. Estrogens produced by central aromatization of T therefore have two independent roles: they activate male copulatory behavior and they regulate the synthesis of aromatase. Double label immunocytochemical studies demonstrate that estrogen receptors(ER) are found in all brain areas containing ARO-ir cells but the extent to which these markers are colocalized varies from one brain region to the other. More than 70% of ARO-ir cells contain detectable ER in the tuberal hypothalamus but less than 20% of the cells display this colocalization in the POA. This absence of ER in ARO-ir cells is also observed in the POA of the rat brain. This suggests that locally formed estrogens cannot control the behavior and the aromatase synthesis in an autocrine fashion in the cells where they were formed. Multi-neuronal networks need therefore to be considered. The behavioral activation could result from the action of estrogens in ER-positive cells located in the vicinity of the ARO-ir cells where they were produced (paracrine action). Alternatively, actions that do not involve the nuclear ER could be important. Immunocytochemical studies at the electron microscope level and biochemical assays of AA in purified synaptosomes indicate the presence of aromatase in presynaptic boutons. Estrogens formed at this level could directly affect the pre-and post-synaptic membrane or could directly modulate neurotransmission namely through their metabolization into catecholestrogens (CE) which are known to be powerful inhibitors of the catechol- omicron - methyl transferase (COMT). The inhibition of COMT should increase the catecholaminergic transmission. It is significant to note, in this respect, that high levels of 2-hydroxylase activity, the enzyme that catalyzes the transformation of estrogens in CE, are found in all brain areas that contain aromatase. On the other hand, the synthesis of aromatase should also be controlled by estrogens in an indirect, transynaptic manner very reminiscent of the way in which steroids indirectly control the production of LHRH. Fibers that are immunoreactive for tyrosine hydroxylase (synthesis of dopamine), dopamine beta-hydroxylase (synthesis of norepinephrine) or vasotocine have been identified in the close vicinity of ARO-ir cells in the POM and retrograde tracing has identified the origin of the dopaminergic and noradrenergic innervation of these areas. A few preliminary physiological experiments suggest that these catecholaminergic inputs regulate AA and presumably synthesis. [less ▲]

Detailed reference viewed: 33 (2 ULg)
Full Text
Peer Reviewed
See detailAppetitive as Well as Consummatory Aspects of Male Sexual Behavior in Quail Are Activated by Androgens and Estrogens
Balthazart, Jacques ULg; Reid, J.; Absil, Philippe ULg et al

in Behavioral Neuroscience (1995), 109(3), 485-501

Appetitive male sexual behavior was measured in male quail with the use of a learned social proximity procedure that quantified the time spent by a male in front of a window providing a view of a female ... [more ▼]

Appetitive male sexual behavior was measured in male quail with the use of a learned social proximity procedure that quantified the time spent by a male in front of a window providing a view of a female that was subsequently released into the cage, providing an opportunity for copulation. The learned response is not acquired by castrated males but can be acquired when castrates are treated with testosterone (T) or with the synthetic estrogen diethylstilbestrol or with the endogenous estrogen 17 beta-estradiol. Only birds that become sexually active acquire the response. Conversely, birds in which the consummatory copulatory behavior is disrupted by treatment with the antiestrogen tamoxifen lose the anticipatory response. These results demonstrate that appetitive sexual behavior is, like copulation, activated by T and by estrogens. This suggests that intracerebral aromatization of T also plays a critical role in the activation of this behavior. [less ▲]

Detailed reference viewed: 15 (1 ULg)