References of "van de Berg, Willem Jan"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailExplanation of the extreme low surface mass balance over the Greenland ice sheet in 2010 with the help of a regional climate model and a circulation type classification.
Fettweis, Xavier ULg; van den Broeke, Michiel; van de Berg, Willem Jan et al

Conference (2011, April 06)

The regional climate models MAR and RCMO show that the surface mass balance (SMB) rate of the whole Greenland ice sheet (GrIS) is the lowest in 2010 since 50 years. This record is a combination of an ... [more ▼]

The regional climate models MAR and RCMO show that the surface mass balance (SMB) rate of the whole Greenland ice sheet (GrIS) is the lowest in 2010 since 50 years. This record is a combination of an abnormal dry year and an exceptional melt in summer confirmed by ground measurements and satellite-derived observations. An automated circulation type classification (CTC) is used for detecting anomalies in the daily atmospheric circulation at 500hPa over the Greenland ice sheet during 2010. The CTC reveals that the low snow accumulation is due to the general circulation (negative NAO index) while the record melt in summer is rather a consequence of the well known surface albedo-temperature feedback induced by - a warmer and thinner than normal snowpack above the bare ice at the end of the spring. - an earlier beginning of the melt season. - a drier summer. - an exceptional persistence of atmospheric circulations inducing warm and dry conditions over the GrIS. All these anomalies induced in summer 2010 an exceptional time exposure of bare ice areas (with a lower albedo than snow) over the GrIS which impacts the surface melt. Sensitivity experiments carried out by the MAR model allow to estimate the importance of each anomaly in the record simulated melt of summer 2010. [less ▲]

Detailed reference viewed: 75 (13 ULg)
Full Text
Peer Reviewed
See detailEvaluation of the Greenland ice sheet surface mass balance simulated by a regional climate model forced by some selected IPCC AR5/CMIP5 AOGCMs over the current climate.
Fettweis, Xavier ULg; van den Broeke, Michiel; van de Berg, Willem Jan et al

Conference (2011, April 05)

Abstract. As part of the ICE2SEA project, the regional climate model MAR was forced by the general circulation model ECHAM5 for making future projections of the Greenland Ice Sheet (GrIS) Surface Mass ... [more ▼]

Abstract. As part of the ICE2SEA project, the regional climate model MAR was forced by the general circulation model ECHAM5 for making future projections of the Greenland Ice Sheet (GrIS) Surface Mass Balance (SMB) over 1980-2099 at a resolution of 25km. For the A1B scenario, MAR projects a highly negative (-500 GT/yr) SMB rate at the end of this century and a induced mass loss corresponding to a sea level rise of ~7 cm over 2000-2100. However, the comparison with MAR forced by the ERA-40 reanalysis over 1980-1999 shows that MAR forced by the 20C3M scenario is not able to represent reliably the current SMB due to biases in the general circulation and in the free atmosphere summer temperature modeled by ECHAM5 around the GrIS. These biases induce in MAR an underestimation of the snow accumulation and an overestimation of the surface melt. Therefore, this questions the reliability of these ECHAM5-forced future projections, knowing that i) these biases could be amplified in future and that ii) the MAR outputs are used to force ice sheets models for the ICE2SEA project. That is why, by waiting the outputs from the next generation of GCMs (CMIP5), we investigate the impacts of current climate biases over the future projections and we suggest corrections of ECHAM5 forcing files for having a better agreement with the ERA-40 forced simulation. This is useful for the ice sheet model wanting to use the absolute values of MAR future projections instead of anomalies. [less ▲]

Detailed reference viewed: 76 (11 ULg)
Full Text
Peer Reviewed
See detailRecord Summer Melt in Greenland in 2010
Tedesco, Marco; Fettweis, Xavier ULg; van den Broeke, Michiel et al

in EOS : Transactions, American Geophysical Union (2011), 92(15), 126

As Arctic temperatures increase, there is growing concern about the melting of the Greenland ice sheet, which reached a new record during the summer of 2010. Understanding the changing surface mass ... [more ▼]

As Arctic temperatures increase, there is growing concern about the melting of the Greenland ice sheet, which reached a new record during the summer of 2010. Understanding the changing surface mass balance of the Greenland ice sheet requires appreciation of the close links among changes in surface air temperature, surface melting, albedo, and snow accumulation. Increased melting accelerates surface snow grain growth, leading to a decrease in surface albedo, which then fosters further melt. In turn, winter accumulation contributes to determining how much snow is required before a dark (e.g., lower albedo), bare ice surface is exposed in spring (Figure 1). [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailThe role of albedo and accumulation in the 2010 melting record in Greenland
Tedesco, Marco; Fettweis, Xavier ULg; van den Broeke, Michiel et al

in Environmental Research Letters (2011), 6(1),

Analyses of remote sensing data, surface observations and output from a regional atmosphere model point to new records in 2010 for surface melt and albedo, runoff, the number of days when bare ice is ... [more ▼]

Analyses of remote sensing data, surface observations and output from a regional atmosphere model point to new records in 2010 for surface melt and albedo, runoff, the number of days when bare ice is exposed and surface mass balance of the Greenland ice sheet, especially over its west and southwest regions. Early melt onset in spring, triggered by above-normal near-surface air temperatures, contributed to accelerated snowpack metamorphism and premature bare ice exposure, rapidly reducing the surface albedo. Warm conditions persisted through summer, with the positive albedo feedback mechanism being a major contributor to large negative surface mass balance anomalies. Summer snowfall was below average. This helped to maintain low albedo through the 2010 melting season, which also lasted longer than usual. [less ▲]

Detailed reference viewed: 45 (7 ULg)