References of "Zorec, J"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA test field for Gaia. Radial velocity catalogue of stars in the South Ecliptic Pole
Frémat, Y.; Altmann, M.; Pancino, E. et al

in Astronomy and Astrophysics (2017), 597

Context. Gaia is a space mission that is currently measuring the five astrometric parameters, as well as spectrophotometry of at least 1 billion stars to G = 20.7 mag with unprecedented precision. The ... [more ▼]

Context. Gaia is a space mission that is currently measuring the five astrometric parameters, as well as spectrophotometry of at least 1 billion stars to G = 20.7 mag with unprecedented precision. The sixth parameter in phase space (i.e., radial velocity) is also measured thanks to medium-resolution spectroscopy that is being obtained for the 150 million brightest stars. During the commissioning phase, two fields, one around each ecliptic pole, have been repeatedly observed to assess and to improve the overall satellite performances, as well as the associated reduction and analysis software. A ground-based photometric and spectroscopic survey was therefore initiated in 2007, and is still running to gather as much information as possible about the stars in these fields. This work is of particular interest to the validation of the radial velocity spectrometer outputs. <BR /> Aims: The paper presents the radial velocity measurements performed for the Southern targets in the 12-17 R magnitude range on high- to mid-resolution spectra obtained with the GIRAFFE and UVES spectrographs. <BR /> Methods: Comparison of the South Ecliptic Pole (SEP) GIRAFFE data to spectroscopic templates observed with the HERMES (Mercator in La Palma, Spain) spectrograph enabled a first coarse characterisation of the 747 SEP targets. Radial velocities were then obtained by comparing the results of three different methods. <BR /> Results: In this paper, we present an initial overview of the targets to be found in the 1 sq. deg SEP region that was observed repeatedly by Gaia ever since its commissioning. In our representative sample, we identified one galaxy, six LMC S-stars, nine candidate chromospherically active stars, and confirmed the status of 18 LMC Carbon stars. A careful study of the 3471 epoch radial velocity measurements led us to identify 145 RV constant stars with radial velocities varying by less than 1 km s[SUP]-1[/SUP]. Seventy-eight stars show significant RV scatter, while nine stars show a composite spectrum. As expected, the distribution of the RVs exhibits two main peaks that correspond to Galactic and LMC stars. By combining [Fe/H] and log g estimates, and RV determinations, we identified 203 members of the LMC, while 51 more stars are candidate members. <BR /> Conclusions: This is the first systematic spectroscopic characterisation of faint stars located in the SEP field. During the coming years, we plan to continue our survey and gather additional high- and mid-resolution data to better constrain our knowledge on key reference targets for Gaia. Tables 1-3, 5, 7, and 8 are only available at the CDS via anonym- ous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A10">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A10</A>Based on data taken with the VLT-UT2 of the European Southern Observatory, programmes 084.D-0427(A), 086.D-0295(A), and 088.D-0305(A).Based on data obtained from the ESO Science Archive Facility under request number 84886.Based on data obtained with the HERMES spectrograph, installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias and supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland and the Thüringer Landessternwarte Tautenburg, Germany. [less ▲]

Detailed reference viewed: 17 (4 ULg)
Full Text
See detailNGC 3293 revisited by the Gaia-ESO Survey
Semaan, Thierry ULg; Morel, Thierry ULg; Gosset, Eric ULg et al

in IAU Symposium 307 (2014)

In the framework of the Gaia-ESO survey we have determined the fundamental parame- ters of a large number of B-type stars in the Galactic, young ope n cluster NGC 3293. The determination of the stellar ... [more ▼]

In the framework of the Gaia-ESO survey we have determined the fundamental parame- ters of a large number of B-type stars in the Galactic, young ope n cluster NGC 3293. The determination of the stellar parameters is based on medium- resolution spectra obtained with FLAMES/GIRAFFE at ESO-VLT. As a second step, we adopted the acc urate parameters to determine the chemical abundances of these hot stars. We pre sent a comparison of our results with those obtained by the ’VLT-FLAMES survey of massive sta rs’ (Evans et al. 2005). Our study increases the number of objects analysed and provides an extended view of this cluster. [less ▲]

Detailed reference viewed: 33 (2 ULg)
Full Text
Peer Reviewed
See detailThe Gaia astrophysical parameters inference system (Apsis). Pre-launch description
Bailer-Jones, C. A. L.; Andrae, R.; Arcay, B. et al

in Astronomy and Astrophysics (2013), 559

The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial ... [more ▼]

The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial velocities for over one hundred million stars. Its main objective is to take a census of the stellar content of our Galaxy, with the goal of revealing its formation and evolution. Gaia's unique feature is the measurement of parallaxes and proper motions with hitherto unparalleled accuracy for many objects. As a survey, the physical properties of most of these objects are unknown. Here we describe the data analysis system put together by the Gaia consortium to classify these objects and to infer their astrophysical properties using the satellite's data. This system covers single stars, (unresolved) binary stars, quasars, and galaxies, all covering a wide parameter space. Multiple methods are used for many types of stars, producing multiple results for the end user according to different models and assumptions. Prior to its application to real Gaia data the accuracy of these methods cannot be assessed definitively. But as an example of the current performance, we can attain internal accuracies (RMS residuals) on F,G,K,M dwarfs and giants at G=15 (V=15-17) for a wide range of metallicites and interstellar extinctions of around 100K in effective temperature (Teff), 0.1mag in extinction (A0), 0.2dex in metallicity ([Fe/H]), and 0.25dex in surface gravity (logg). The accuracy is a strong function of the parameters themselves, varying by a factor of more than two up or down over this parameter range. After its launch in November 2013, Gaia will nominally observe for five years, during which the system we describe will continue to evolve in light of experience with the real data. [less ▲]

Detailed reference viewed: 41 (20 ULg)
Full Text
See detail2009: A Colliding-Wind Odyssey
Fahed, R.; Moffat, A. F. J.; Zorec, J. et al

in Astronomical Society of the Pacific Conference Series (2013, January 01)

We present the results from two optical spectroscopic campaigns on colliding-wind binaries (CWB) which both occurred in 2009. The first one was on WR 140 (WC7pd + O5.5fc), the archetype of CWB, which ... [more ▼]

We present the results from two optical spectroscopic campaigns on colliding-wind binaries (CWB) which both occurred in 2009. The first one was on WR 140 (WC7pd + O5.5fc), the archetype of CWB, which experienced periastron passage of its highly elliptical 8-year orbit in January. The WR 140 campaign consisted of a unique and constructive collaboration between amateur and professional astronomers and took place at half a dozen locations, including Teide Observatory, Observatoire de Haute Provence, Dominion Astrophysical Observatory, Observatoire du Mont-Mégantic and at several small private observatories. The second campaign was on a selection of 5 short-period WR + O binaries not yet studied for colliding-wind effects: WR 12 (WN8h), WR 21 (WN5o + O7 V), WR 30 (WC6 + O7.5 V), WR 31 (WN4o + O8), and WR 47 (WN6o + O5). The campaign took place at Leoncito Observatory, Argentina, during 1 month. We provide updated values of most of these systems for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates and colliding wind geometry. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailStochastic gravito-inertial modes discovered by CoRoT in the hot Be star HD 51452
Neiner, C.; Floquet, M.; Samadi, R. et al

in Astronomy and Astrophysics (2012), 546

Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the κ-mechanism, i.e. an effect of the opacity of ... [more ▼]

Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the κ-mechanism, i.e. an effect of the opacity of iron-peak elements in the envelope of the star. In the Milky Way, p-modes are observed in stars that are hotter than or equal to the B3 spectral type, while g-modes are observed at the B2 spectral type and cooler. <BR /> Aims: We observed a B0IVe star, HD 51452, with the high-precision, high-cadence photometric CoRoT satellite and high-resolution, ground-based HARPS and SOPHIE spectrographs to study its pulsations in great detail. We also used the lower resolution spectra available in the BeSS database. <BR /> Methods: We analyzed the CoRoT and spectroscopic data with several methods: Clean-NG, FreqFind, and a sliding window method. We also analyzed spectral quantities, such as the violet over red (V/R) emission variations, to obtain information about the variation in the circumstellar environment. We calculated a stellar structure model with the ESTER code to test the various interpretation of the results. <BR /> Results: We detect 189 frequencies of variations in the CoRoT light curve in the range between 0 and 4.5 c d[SUP]-1[/SUP]. The main frequencies are also recovered in the spectroscopic data. In particular we find that HD 51452 undergoes gravito-inertial modes that are not in the domain of those excited by the κ-mechanism. We propose that these are stochastic modes excited in the convective zones and that at least some of them are a multiplet of r-modes (i.e. subinertial modes mainly driven by the Coriolis acceleration). Stochastically excited gravito-inertial modes had never been observed in any star, and theory predicted that their very low amplitudes would be undetectable even with CoRoT. We suggest that the amplitudes are enhanced in HD 51452 because of the very rapid stellar rotation. In addition, we find that the amplitude variations of these modes are related to the occurrence of minor outbursts. <BR /> Conclusions: Thanks to CoRoT data, we have detected a new kind of pulsations in HD 51452, which are stochastically excited gravito-inertial modes, probably due to its very rapid rotation. These modes are probably also present in other rapidly rotating hot Be stars. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD, and Science Programs), Germany, and Spain. This work uses observations partly made with the HARPS instrument at the 3.6-m ESO telescope (La Silla, Chile) in the framework of the LP182.D-0356, as well as data obtained with Sophie at OHP and from the BeSS database.Table 3 is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 50 (4 ULg)
Full Text
See detailThe Gaia-ESO Public Spectroscopic Survey
Gilmore, G.; Randich, S.; Asplund, M. et al

in The Messenger (2012), 147

The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically ... [more ▼]

The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. The motivation, organisation and implementation of the Gaia-ESO Survey are described, emphasising the complementarity with the ESA Gaia mission. Spectra from the very first observing run of the survey are presented. [less ▲]

Detailed reference viewed: 143 (1 ULg)
Full Text
Peer Reviewed
See detailSpectroscopy of the archetype colliding-wind binary WR 140 during the 2009 January periastron passage
Fahed, R.; Moffat, A. F. J.; Zorec, J. et al

in Monthly Notices of the Royal Astronomical Society (2011), 418

We present the results from the spectroscopic monitoring of WR 140 (WC7pd + O5.5fc) during its latest periastron passage in 2009 January. The observational campaign consisted of a constructive ... [more ▼]

We present the results from the spectroscopic monitoring of WR 140 (WC7pd + O5.5fc) during its latest periastron passage in 2009 January. The observational campaign consisted of a constructive collaboration between amateur and professional astronomers. It took place at six locations, including Teide Observatory, Observatoire de Haute Provence, Dominion Astrophysical Observatory and Observatoire du Mont Mégantic. WR 140 is known as the archetype of colliding-wind binaries and it has a relatively long period (?8 yr) and high eccentricity (?0.9). We provide updated values for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates and colliding-wind geometry. [less ▲]

Detailed reference viewed: 19 (2 ULg)
Full Text
See detailThe WR 140 periastron passage 2009: first results from MONS and other optical sources
Fahed, R.; Moffat, A. F. J.; Zorec, J. et al

in Eversberg, Thomas; Knapen, Johan (Eds.) Stellar Winds in Interaction (2011, January 01)

We present the results from the spectroscopic follow-up of WR140 (WC7 + O4-5) during its last periastron passage in January 2009. This object is known as the archetype of colliding wind binaries and has a ... [more ▼]

We present the results from the spectroscopic follow-up of WR140 (WC7 + O4-5) during its last periastron passage in January 2009. This object is known as the archetype of colliding wind binaries and has a relatively large period (~ 8 years) and eccentricity (~ 0.89). We provide updated values for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailSpectroscopic follow-up of the colliding-wind binary WR140 during the 2009 January periastron passage
Fahed, R.; Moffat, A. F. J.; Zorec, J. et al

in Bulletin de la Societe Royale des Sciences de Liege (2011), 80

We present the results from the spectroscopic follow-up of WR140 (WC7 + O4-5) during its last periastron passage in January 2009. This object is known as the archetype of colliding wind binaries and has a ... [more ▼]

We present the results from the spectroscopic follow-up of WR140 (WC7 + O4-5) during its last periastron passage in January 2009. This object is known as the archetype of colliding wind binaries and has a relatively large period (≃8 years) and eccentricity (≃0.9). We provide updated values for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates. [less ▲]

Detailed reference viewed: 44 (2 ULg)
See detailHot stars survey with the GAIA space mission
Lobel, A.; Liu, C.; Frémat, Y. et al

Poster (2009)

Detailed reference viewed: 33 (11 ULg)
See detailEmission line stars in the Milky Way with the GAIA space mission
Martayan, C.; Frémat, Y.; Blomme, R. et al

Poster (2009)

Detailed reference viewed: 9 (0 ULg)
Full Text
See detailThe Gaia satellite: a tool for Emission Line Stars and Hot Stars
Martayan, C.; Frémat, Y.; Blomme, R. et al

in SF2A-2008 (2008, November 01)

The Gaia satellite will be launched at the end of 2011. It will observe at least 1 billion stars, and among them several million emission line stars and hot stars. Gaia will provide parallaxes for each ... [more ▼]

The Gaia satellite will be launched at the end of 2011. It will observe at least 1 billion stars, and among them several million emission line stars and hot stars. Gaia will provide parallaxes for each star and spectra for stars till V magnitude equal to 17. After a general description of Gaia, we present the codes and methods, which are currently developed by our team. They will provide automatically the astrophysical parameters and spectral classification for the hot and emission line stars in the Milky Way and other close local group galaxies such as the Magellanic Clouds. [less ▲]

Detailed reference viewed: 34 (6 ULg)
Full Text
Peer Reviewed
See detailThe spectra of massive stars with GAIA
Bouret, J C; Lanz, T; Frémat, Y et al

in Revista Mexicana de Astronomía y Astrofísica (2008), 33

Detailed reference viewed: 10 (0 ULg)