References of "Zarka, P"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMagnetospheric Science Objectives of the Juno Mission
Bagenal, Fran; Adriani, A.; Allegrini, F. et al

in Space Science Reviews (2014)

In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and enture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we ... [more ▼]

In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and enture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets. [less ▲]

Detailed reference viewed: 20 (3 ULg)
See detailModel of the Jovian magnetic field topology constrained by the Io auroral emissions
Hess, S.; Bonfond, Bertrand ULg; Grodent, Denis ULg et al

Poster (2011, July 11)

Detailed reference viewed: 3 (1 ULg)
Full Text
Peer Reviewed
See detailModel of the Jovian magnetic field topology constrained by the Io auroral emissions
Hess, S. L. G.; Bonfond, Bertrand ULg; Zarka, P. et al

in Journal of Geophysical Research. Space Physics (2011), 116

The determination of the internal magnetic field of Jupiter has been the object of many studies and publications. These models have been computed from the Pioneer, Voyager, and Ulysses measurements. Some ... [more ▼]

The determination of the internal magnetic field of Jupiter has been the object of many studies and publications. These models have been computed from the Pioneer, Voyager, and Ulysses measurements. Some models also use the position of the Io footprints as a constraint: the magnetic field lines mapping to the footprints must have their origins along Io's orbit. The use of this latter constraint to determine the internal magnetic field models greatly improved the modeling of the auroral emissions, in particular the radio ones, which strongly depends on the magnetic field geometry. This constraint is, however, not sufficient for allowing a completely accurate modeling. The fact that the footprint field line should map to a longitude close to Io's was not used, so that the azimuthal component of the magnetic field could not be precisely constrained. Moreover, a recent study showed the presence of a magnetic anomaly in the northern hemisphere, which has never been included in any spherical harmonic decomposition of the internal magnetic field. We compute a decomposition of the Jovian internal magnetic field into spherical harmonics, which allows for a more accurate mapping of the magnetic field lines crossing Io, Europa, and Ganymede orbits to the satellite footprints observed in UV. This model, named VIPAL, is mostly constrained by the Io footprint positions, including the longitudinal constraint, and normalized by the Voyager and Pioneer magnetic field measurements. We show that the surface magnetic fields predicted by our model are more consistent with the observed frequencies of the Jovian radio emissions than those predicted by previous models. [less ▲]

Detailed reference viewed: 14 (2 ULg)
See detailSaturn's radio, UV and IR aurorae observed simultaneously by Cassini
Lamy, L.; Prangé, R.; Gustin, Jacques ULg et al

in European Planetary Science Congress 2010 (2010, September 01)

Not Available

Detailed reference viewed: 4 (1 ULg)
Full Text
Peer Reviewed
See detailLead angles and emitting electron energies of Io-controlled decameter radio arcs
Hess, S. L. G.; Petin, A.; Zarka, P. et al

in Planetary and Space Science (2010), 58(10), 1188-1198

The Io-controlled radio arcs are emissions in the decametric radio range which appear arc shaped in the time-frequency plane. Their occurrence is controlled by Io's position, so it has been for long ... [more ▼]

The Io-controlled radio arcs are emissions in the decametric radio range which appear arc shaped in the time-frequency plane. Their occurrence is controlled by Io's position, so it has been for long inferred that they are powered by the Io-Jupiter electrodynamic interaction. Their frequency ranges correspond to the electron cyclotron frequencies along the Io Flux tube, so they are expected to be generated by cyclotron maser instability (CMI). The arc shape was proposed to be a consequence of the strong anisotropy of the decametric radio emissions beaming, combined with the topology of the magnetic field in the source and the observation geometry. Recent papers succeeded at reproducing the morphologies of a few typical radio arcs by modeling in three dimensions the observation geometry, using the best available magnetic field model and a beaming angle variation consistent with a loss-cone driven CMI. In the continuation of these studies, we present here the systematic modeling of a larger number of observations of the radio arcs emitted in Jupiter's southern hemisphere (including multiple arcs or arcs exhibiting abrupt changes of shape), which permits to obtain a statistical determination of the emitting field line localization (lead angle) relative to the instantaneous Io field line, and of the emitting particle velocities or energies. Variations of these parameters relative to Io's longitude are also measured and compared to the location of the UV footprints of the Io-Jupiter interaction. It is shown that the data are better organized in a reference frame attached to the UV spot resulting from the main Alfven wing resulting from the Io-Jupiter interaction. It is proposed that the radio arcs are related to the first reflected Alfven wing rather than to the main one. (C) 2010 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 29 (0 ULg)
Full Text
Peer Reviewed
See detailVariation of Saturn's UV aurora with SKR phase
Nichols, J. D.; Cecconi, B.; Clarke, J. T. et al

in Geophysical Research Letters (2010), 37

It is well known that a wide range of kronian magnetospheric phenomena, including the Saturn kilometric radiation (SKR), exhibit oscillations near the planetary rotation period. However, although the SKR ... [more ▼]

It is well known that a wide range of kronian magnetospheric phenomena, including the Saturn kilometric radiation (SKR), exhibit oscillations near the planetary rotation period. However, although the SKR is believed to be generated by unstable auroral electrons, no connection has been established to date between diurnal SKR modulations and UV auroral power. We use an empirical SKR phase determined from Cassini observations to order the 'quiet time' total emitted UV auroral power as observed by the Hubble Space Telescope in programs during the interval 2005-2009. Our results indicate that both the northern and southern UV powers are dependent on SKR phase, varying diurnally by factors of similar to 3. We also show that the UV variation originates principally from the morning half of the oval, consistent with previous observations of the SKR sources. Citation: Nichols, J. D., B. Cecconi, J. T. Clarke, S. W. H. Cowley, J.-C. Gerard, A. Grocott, D. Grodent, L. Lamy, and P. Zarka (2010), Variation of Saturn's UV aurora with SKR phase, Geophys. Res. Lett., 37, L15102, doi: 10.1029/2010GL044057. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailResponse of Jupiter's and Saturn's auroral activity to the solar wind
Clarke, J. T.; Nichols, J.; Gérard, Jean-Claude ULg et al

in Journal of Geophysical Research. Space Physics (2009), 114

While the terrestrial aurorae are known to be driven primarily by the interaction of the Earth's magnetosphere with the solar wind, there is considerable evidence that auroral emissions on Jupiter and ... [more ▼]

While the terrestrial aurorae are known to be driven primarily by the interaction of the Earth's magnetosphere with the solar wind, there is considerable evidence that auroral emissions on Jupiter and Saturn are driven primarily by internal processes, with the main energy source being the planets' rapid rotation. Prior observations have suggested there might be some influence of the solar wind on Jupiter's aurorae and indicated that auroral storms on Saturn can occur at times of solar wind pressure increases. To investigate in detail the dependence of auroral processes on solar wind conditions, a large campaign of observations of these planets has been undertaken using the Hubble Space Telescope, in association with measurements from planetary spacecraft and solar wind conditions both propagated from 1 AU and measured near each planet. The data indicate a brightening of both the auroral emissions and Saturn kilometric radiation at Saturn close in time to the arrival of solar wind shocks and pressure increases, consistent with a direct physical relationship between Saturnian auroral processes and solar wind conditions. At Jupiter the correlation is less strong, with increases in total auroral power seen near the arrival of solar wind forward shocks but little increase observed near reverse shocks. In addition, auroral dawn storms have been observed when there was little change in solar wind conditions. The data are consistent with some solar wind influence on some Jovian auroral processes, while the auroral activity also varies independently of the solar wind. This extensive data set will serve to constrain theoretical models for the interaction of the solar wind with the magnetospheres of Jupiter and Saturn. [less ▲]

Detailed reference viewed: 70 (14 ULg)
See detailThe Degree of Correlation of Jovian and Saturnian Auroral Emissions With Solar Wind Conditions
Clarke, J. T.; Nichols, J.; Gérard, Jean-Claude ULg et al

Conference (2008, December 01)

While the terrestrial aurorae are known to be driven primarily by the interaction of the Earth's magnetosphere with the solar wind, auroral emissions on Jupiter and Saturn are thought to be driven ... [more ▼]

While the terrestrial aurorae are known to be driven primarily by the interaction of the Earth's magnetosphere with the solar wind, auroral emissions on Jupiter and Saturn are thought to be driven primarily by internal processes, with the main energy source being the planets' rapid rotation. Limited evidence has suggested there might be some influence of the solar wind on Jupiter's aurorae, and indicated that auroral storms on Saturn can occur at times of solar wind pressure increases. To investigate in detail the dependence of auroral processes on solar wind conditions, a large campaign of observations of these planets has been undertaken using the Hubble Space Telescope, in association with measurements from planetary spacecraft and solar wind conditions both propagated from one AU and measured near each planet. The data indicate a consistent brightening of both the auroral emissions and Saturn Kilometric Radiation (SKR) at Saturn close in time to the arrival of solar wind shocks and pressure increases, consistent with a direct physical relationship between Saturnian auroral processes and solar wind conditions. This correlation has been strengthened by the final campaign observations in Feb. 2008. At Jupiter the situation is less clear, with increases in total auroral power seen near the arrival of solar wind forward shocks, while little increase has been observed near reverse shocks. In addition, auroral dawn storms have been observed when there was little change in solar wind conditions. The data are consistent with some solar wind influence on some Jovian auroral processes, while the auroral activity also varies independently of the solar wind. This extensive data set will serve to constrain theoretical models for the interaction of the solar wind with the magnetospheres of Jupiter and Saturn. [less ▲]

Detailed reference viewed: 55 (8 ULg)
See detailHST STIS Observations of Saturn's Auroral Variations Concurrent with the Cassini Solar Wind Campaign in Jan. 2004
Clarke, J. T.; Gérard, Jean-Claude ULg; Grodent, Denis ULg et al

Conference (2004, May 17)

Saturn's magnetosphere is often referred to as "intermediate between the cases of the Earth and Jupiter". Due to very limited measurements of Saturn's magnetosphere and auroral activity, however, it has ... [more ▼]

Saturn's magnetosphere is often referred to as "intermediate between the cases of the Earth and Jupiter". Due to very limited measurements of Saturn's magnetosphere and auroral activity, however, it has never been clear in detail what this statement means. A recent campaign of HST STIS UV imaging of Saturn's aurora has been carried out over 8-30 Jan. 2004 concurrent with measurements of the approaching solar wind by Cassini. This imaging set is much more comprehensive than any earlier observations of Saturn's aurora, obtained at a time when Saturn's southern auroral oval is completely visible due to the large apparent tilt of Saturn. The data provide the opportunity to determine the mean distribution of the auroral emissions, the degree of corotation of any bright regions, any variations with local time of the emissions, the latitudinal motions of the main oval with time and location, and other parameters. In addition, each of these can be compared with the approaching solar wind conditions and Saturn's kilometric radiation (SKR) intensity from Cassini measurements. Quick looks at the data from HST and Cassini demonstrate that the measurements have been made successfully, and the coverage includes dramatic variations in Saturn's auroral activity as well as at least two solar wind shocks passing Cassini. This presentation will concentrate on the measured properties of Saturn's aurora in the context of comparisons with the magnetospheres of the Earth and Jupiter. [less ▲]

Detailed reference viewed: 23 (5 ULg)
See detailComparisons of Saturn Kilometric Radiation and Saturn's UV Aurora
Kurth, William; Gurnett, D. A.; Clarke, J. T. et al

Conference (2004, May 17)

During the period 8 to 30 January 2004, a campaign to study the correlation between the solar wind and the response of Saturn's aurora was carried out using Cassini and the Hubble Space Telescope. In ... [more ▼]

During the period 8 to 30 January 2004, a campaign to study the correlation between the solar wind and the response of Saturn's aurora was carried out using Cassini and the Hubble Space Telescope. In particular, fields and particles instruments on Cassini were used to monitor the solar wind near Saturn and Saturn kilometric radio emissions nearly continuously. STIS images from Hubble were obtained approximately every other day to record Saturn's UV auroral morphology and intensity. In this paper we focus particularly on the relationship between the Saturn kilometric emissions and the auroral brightness and morphology. The radio emissions are generally believed to be generated by the cyclotron maser instability on auroral field lines similar to the situation for auroral kilometric radiation at Earth. A number of studies have shown a direct relationship between the radio emissions and discrete auroral arcs at Earth. Hence, one expects a relationship between the radio emissions and the aurora at Saturn. During the campaign, two corotating interaction regions (CIRs) swept past Cassini and Saturn (which were of order 0.5 AU apart at the time). Accompanying the CIRs were high solar wind densities. As expected from Voyager studies, the higher solar wind density resulted in generally more intense radio emissions. The UV images show that Saturn's UV aurora brighten considerably in response to the CIRs, as well. Furthermore, the brightest aurora usually appear in the local morning, consistent with the Voyager-determined SKR source region on field lines connecting to the magnetopause and the Kelvin-Helmholtz hypothesis for the origin of accelerated electrons. A more detailed examination of the auroral phenomena show much more complex variations, however. The radio emission frequency extent and peak frequency vary remarkably from one Saturn rotation to the next. Similarly, the auroral morphology changes dramatically. For example, it appears the evolution of the auroral oval to higher latitudes (higher L-shells) is correlated with a shift in the frequency of peak radio emissions to lower frequencies. This can be explained through an analysis of the cyclotron maser beaming geometry. We examine this and other aspects of the correlations between the radio emissions and the aurora. [less ▲]

Detailed reference viewed: 51 (5 ULg)
See detailAuroral Signature of the Interaction of Comet Shoemaker-Levy 9 with the Jovian Magnetosphere
Prangé; Emerich, C.; Rego, D. et al

in Bulletin of the American Astronomical Society (1994, June 01)

Not Available

Detailed reference viewed: 2 (1 ULg)