References of "Zander, Rodolphe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSpectrometric monitoring of atmospheric carbon tetrafluoride (CF4) above the Jungfraujoch station since 1989: evidence of continued increase but at a slowing rate
Mahieu, Emmanuel ULg; Zander, Rodolphe ULg; Toon, G. C. et al

in Atmospheric Measurement Techniques (2014), 7

The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.) has been derived from the ... [more ▼]

The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.) has been derived from the spectrometric analysis of Fourier transform infrared solar spectra recorded at that site between 1989 and 2012. The investigation is based on a multi-microwindow approach, two encompassing pairs of absorption lines belonging to the R-branch of the strong ν3 band of CF4 centered at 1283 cm−1, and two additional ones to optimally account for weak but overlapping HNO3 interferences. The analysis reveals a steady accumulation of the very long-lived CF4 above the Jungfraujoch at mean rates of (1.38 ± 0.11) × 1013 molec cm−2 yr−1 from 1989 to 1997, and (0.98 ± 0.02) × 1013 molec cm−2 yr−1 from 1998 to 2012, which correspond to linear growth rates of 1.71 ± 0.14 and 1.04 ± 0.02% yr−1 respectively referenced to 1989 and 1998. Related global CF4 anthropogenic emissions required to sustain these mean increases correspond to 15.8 ± 1.3 and 11.1 ± 0.2 Gg yr−1 over the above specified time intervals. Findings reported here are compared and discussed with respect to relevant northern mid-latitude results obtained remotely from space and balloons as well as in situ at the ground, including new gas chromatography mass spectrometry measurements performed at the Jungfraujoch since 2010. [less ▲]

Detailed reference viewed: 63 (21 ULg)
Full Text
Peer Reviewed
See detailRecent trend anomaly of hydrogen chloride (HCl) at northern mid-latitudes derived from Jungfraujoch, HALOE and ACE-FTS Infrared solar observations
Mahieu, Emmanuel ULg; Zander, Rodolphe ULg; Bernath, Peter F. et al

in Bernath, Peter F. (Ed.) The Atmospheric Chemistry Experiment ACE at 10: A Solar Occultation Anthology (2013)

In this contribution, we analyze infrared solar observations recorded from the ground at the Jungfraujoch station and from space with the HALOE and the ACE-FTS instruments to derive time series of ... [more ▼]

In this contribution, we analyze infrared solar observations recorded from the ground at the Jungfraujoch station and from space with the HALOE and the ACE-FTS instruments to derive time series of stratospheric columns of hydrogen chloride (HCl) at Northern mid-latitudes. We investigate the Jungfraujoch and the composite satellite time series to characterize the evolution of HCl over the last 15 years, i.e. after its peak loading which occurred in 1996 in this region of the Earth’s atmosphere. Trends derived from both data sets are compared and possible causes for the recent change in the stratospheric HCl buildup are evoked. [less ▲]

Detailed reference viewed: 40 (5 ULg)
Full Text
See detailFirst retrievals of HCFC-142b from ground-based high resolution FTIR solar observations: application to high altitude Jungfraujoch spectra
Mahieu, Emmanuel ULg; O'Doherty, Simon; Reimann, Stefan et al

in Geophysical Research Abstracts (2013), 15

Hydrofluorocarbons (HCFCs) are the first substitutes to the long-lived ozone depleting halocarbons, in particular the chlorofluorocarbons (CFCs). Given the complete ban of the CFCs by the Montreal ... [more ▼]

Hydrofluorocarbons (HCFCs) are the first substitutes to the long-lived ozone depleting halocarbons, in particular the chlorofluorocarbons (CFCs). Given the complete ban of the CFCs by the Montreal Protocol, its Amendments and Adjustments, HCFCs are on the rise, with current rates of increase substantially larger than at the beginning of the 21st century. HCFC-142b (CH3CClF2) is presently the second most abundant HCFC, after HCFC-22 (CHClF2). It is used in a wide range of applications, including as a blowing foam agent, in refrigeration and air-conditioning. Its concentration will soon reach 25 ppt in the northern hemisphere, with mixing ratios increasing at about 1.1 ppt/yr [Montzka et al., 2011]. The HCFC-142b lifetime is estimated at 18 years. With a global warming potential of 2310 on a 100-yr horizon, this species is also a potent greenhouse gas [Forster et al., 2007]. First space-based retrievals of HCFC-142b have been reported by Dufour et al. [2005]. 17 occultations recorded in 2004 by the Canadian ACE-FTS instrument (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer, onboard SCISAT-1) were analyzed, using two microwindows (1132.5–1135.5 and 1191.5–1195.5 cm-1). In 2009, Rinsland et al. determined the HCFC-142b trend near the tropopause, from the analysis of ACE-FTS observations recorded over the 2004–2008 time period. The spectral region used in this study extended from 903 to 905.5 cm-1. In this contribution, we will present the first HCFC-142b measurements from ground-based high-resolution Fourier Transform Infrared (FTIR) solar spectra. We use observations recorded at the high altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl), with a Bruker 120HR instrument, in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). The retrieval of HCFC-142b is very challenging, with simulations indicating only weak absorptions, lower than 1% for low sun spectra and current concentrations. Among the four microwindows tested, the region extending from 900 to 906 cm-1 proved to be the most appropriate, with limited interferences, in particular from water vapor. A total column time series spanning the 2004-2012 time period will be presented, analyzed and critically discussed. After conversion of our total columns to concentrations, we will compare our results with in situ measurements performed in the northern hemisphere by the AGAGE network. [less ▲]

Detailed reference viewed: 81 (18 ULg)
Full Text
See detailLong-term trends of NO above northern mid-latitudes as inferred from Jungfraujoch, HALOE and ACE-FTS solar observations
Demoulin, Philippe ULg; Mahieu, Emmanuel ULg; Servais, Christian ULg et al

Poster (2012, August 27)

Routine FTIR solar observations are performed by the University of Liège at the Jungfraujoch station (Swiss Alps, 3580 m altitude, NDACC station) since 1985. The analysis of the recorded spectra allows to ... [more ▼]

Routine FTIR solar observations are performed by the University of Liège at the Jungfraujoch station (Swiss Alps, 3580 m altitude, NDACC station) since 1985. The analysis of the recorded spectra allows to derive total and partial columns of more than 20 different atmospheric gases. Among them, gases belonging to the total reactive nitrogen NOy (NO, NO2, HNO3 and ClONO2), to the total inorganic chlorine Cly (HCl and ClONO2) and to the total inorganic fluorine Fy (HF and COF2) families. In this communication, budgets of these gas families are investigated, and their short term, seasonal and inter-annual variations as well as their long-term trends are determined for the time period ranging from the mid-1980s up to the end of 2011. We also investigate the evolution of the same gases, when available, derived from ground-based UV-vis (1990-present) and from HALOE (1991-2004) and ACE-FTS (2004-present) satellite observations. We evaluate the consistency between the trends characterizing these various species, as deduced from the ground- and space-based time series. [less ▲]

Detailed reference viewed: 11 (3 ULg)
Full Text
See detailRetrieval of methanol (CH3OH) above the high-altitude Jungfraujoch station (46.5ºN): preliminary total column time series, long-term trend and seasonal modulation
Mahieu, Emmanuel ULg; Bader, Whitney ULg; Bovy, Benoît ULg et al

Poster (2012, June)

Methanol (CH3OH) is a key organic compound in the Earth’s troposphere, with reported concentrations of the order of a few ppbv. It is indeed the second most abundant organic atmospheric compound after ... [more ▼]

Methanol (CH3OH) is a key organic compound in the Earth’s troposphere, with reported concentrations of the order of a few ppbv. It is indeed the second most abundant organic atmospheric compound after methane. Its lifetime is estimated to a few days. Natural sources of CH3OH include plant growth, oceans, decomposition of plant matter, oxidation of methane,… They are complemented by anthropogenic (from vehicles, industry) and biomass burning emissions. Oxidation by the hydroxyl radical is the main sink, leading to the formation of carbon monoxide (CO) and formaldehyde (H2CO). The first reported retrievals of methanol used a microwindow extending from 992 to 999 cm-1 or from 1029 to 1037 cm-1. In both cases, lines of the strong ν8 band of CH3OH were adjusted, accounting for interferences by several isotopologues of ozone and by water vapor. In this contribution, we present first retrievals of CH3OH from observations recorded at the high-altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl), with a Bruker 120HR spectrometer, in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). A strategy maximizing the information content and combining the 992-999 and 1029-1037 cm-1 domains has been set up and used. A preliminary long-term CH3OH total column time series derived from the Jungfraujoch observational database allows us to investigate the seasonal variation and long-term trend of this species at northern mid-latitudes. [less ▲]

Detailed reference viewed: 58 (21 ULg)
Full Text
See detailSeeking for the optimum retrieval strategy of methanol (CH3OH) from ground-based high-resolution FTIR solar observations recorded at the high-altitude Jungfraujoch station (46.5ºN)
Mahieu, Emmanuel ULg; Bader, Whitney ULg; Lejeune, Bernard ULg et al

in Geophysical Research Abstracts (2012), 14

Methanol (CH3OH) is a key organic compound in the Earth’s troposphere, with reported concentrations of the order of a few ppbv. It is indeed the second most abundant organic atmospheric compound after ... [more ▼]

Methanol (CH3OH) is a key organic compound in the Earth’s troposphere, with reported concentrations of the order of a few ppbv. It is indeed the second most abundant organic atmospheric compound after methane (Jacob et al., 2005). The same authors have estimated its lifetime to a few days. Natural sources of CH3OH include plant growth, oceans, decomposition of plant matter, oxidation of methane,. . . They are complemented by anthropogenic (from vehicles, industry) and biomass burning emissions. Oxidation by the hydroxyl radical is the main sink, leading to the formation of carbon monoxide (CO) and formaldehyde (H2CO) (Rinsland et al., 2009; Stavrakou et al., 2011, and references therein). The first retrievals of methanol from ground-based Fourier Transform Infrared (FTIR) spectra have been reported by Rinsland et al. (2009), using spectra recorded at Kitt Peak (31.9ºN) and a microwindow extending from 992 to 999 cm-1. Soon after, Stavrakou et al. (2011) used another spectral interval from 1029 to 1037 cm-1, for methanol retrievals at Reunion Island (21ºS). In both cases, lines of the strong nu8 band of CH3OH were adjusted, accounting for interferences by several isotopologues of ozone and by water vapor. In this contribution, we will present first retrievals of CH3OH from observations recorded at the high-altitude station of the Jungfraujoch (46.5ºN, 8ºE, 3580 m asl), with a Bruker 120HR spectrometer, in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). We will implement existing retrieval approaches –and possibly additional one(s)– to determine which strategy is the most appropriate for our dry high-altitude site. If successful, a long-term CH3OH total column time series will be produced using the Jungfraujoch observational database, and we will perform preliminary investigations to characterize the seasonal and inter-annual variations of this species at northern mid-latitudes. [less ▲]

Detailed reference viewed: 78 (30 ULg)
Full Text
Peer Reviewed
See detailDecrease of the Carbon Tetrachloride (CCl4) Loading above Jungfraujoch, based on High Resolution Infrared Solar Spectra recorded between 1999 and 2011
Rinsland, C. P.; Mahieu, Emmanuel ULg; Demoulin, Philippe ULg et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2012), 113

The long-term trend of the atmospheric carbon tetrachloride (CCl4) burden has been retrieved from high spectral resolution infrared solar absorption spectra recorded between January 1999 and June 2011 ... [more ▼]

The long-term trend of the atmospheric carbon tetrachloride (CCl4) burden has been retrieved from high spectral resolution infrared solar absorption spectra recorded between January 1999 and June 2011. The observations were made with a Fourier transform spectrometer at the northern mid-latitude, high altitude Jungfraujoch station in Switzerland (46.5°N latitude, 8.0°E longitude, 3580 m altitude). Total columns were derived from spectrometric analysis of the strong CCl4 ν3 band at 794 cm-1, accounting for all interfering molecules (e.g., H2O, CO2, O3, and a dozen weakly absorbing gases). A significant improvement in the fitting residuals and in the retrieved CCl4 columns was obtained by taking into account line mixing in a strong interfering CO2 Q branch. This procedure had never been implemented in remote sensing CCl4 retrievals though its importance was noted in earlier studies. A fit to the CCl4 daily mean total column time series returns a statistically-significant long-term trend of (-1.49±0.08 x 1013 molec./cm2)/yr, 2-σ. This corresponds to an annual decrease of (-1.31±0.07) pptv for the mean free tropospheric volume mixing ratio. Furthermore, the total column data set reveals a weak seasonal cycle with a peak-to-peak amplitude of 4.5 %, with minimum and maximum values occurring in mid-February and mid-September, respectively. This small seasonal modulation is attributed primarily to the residual influence of tropopause height changes throughout the year. The negative trend of the CCl4 loading reflects the continued impact of the regulations implemented by the Montreal Protocol and its strengthening amendments and adjustments. Despite this statistically significant decrease, the CCl4 molecule currently remains an important contributor to the atmospheric chlorine budget, and thus deserves further monitoring, to ensure continued compliance with these strengthenings, globally. Our present findings are briefly discussed with respect to recent relevant CCl4 investigations at the ground and from space. [less ▲]

Detailed reference viewed: 65 (9 ULg)
Full Text
See detailLong-term trends of a dozen direct greenhouse gases derived from infrared solar absorption spectra recorded at the Jungfraujoch station
Mahieu, Emmanuel ULg; Duchatelet, Pierre; Zander, Rodolphe ULg et al

Poster (2011, November 10)

References Bader, W. et al., Extension of the long-term total column time series of atmospheric methane above the Jungfraujoch station: analysis of grating infrared spectra between 1976 and 1989 ... [more ▼]

References Bader, W. et al., Extension of the long-term total column time series of atmospheric methane above the Jungfraujoch station: analysis of grating infrared spectra between 1976 and 1989, Geophysical Research Abstracts, 13, EGU2011-3391-1, 2011. [http://hdl.handle.net/2268/88180] Duchatelet, P. et al., First retrievals of carbon tetrafluoride (CF4) from ground-based FTIR measurements: production and analysis of the two-decadal time series above the Jungfraujoch, Geophysical Research Abstracts, 13, EGU2011-6413, 2011. [http://hdl.handle.net/2268/90745] Gardiner, T. et al., Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments, Atmos. Chem. Phys., 8, 6719-6727, 2008. [http://hdl.handle.net/2268/2545] Rodgers, C.D., Characterisation and error analysis of profiles derived from remote sensing measurements, J. Geophys. Res., 95, 5587-5595, 1990. Zander, R. et al., Our changing atmosphere: Evidence based on long-term infrared solar observations at the Jungfraujoch since 1950, Sci. Total Environ., 391, 184-195, 2008. [http://hdl.handle.net/2268/2421] [less ▲]

Detailed reference viewed: 181 (34 ULg)
Full Text
See detailAnalysis of historical grating spectra: Jungfraujoch atmospheric database extended back to 1977
Demoulin, Philippe ULg; Roland, Ginette; Bader, Whitney ULg et al

Conference (2011, November 10)

Historical solar spectra recorded at the Jungfraujoch station with a high-resolution grating spectrometer have been re-analyzed to derive total columns of a series of atmospheric gases. This instrument ... [more ▼]

Historical solar spectra recorded at the Jungfraujoch station with a high-resolution grating spectrometer have been re-analyzed to derive total columns of a series of atmospheric gases. This instrument, built and operated by the University of Liège (Belgium), was used in the Sixties and Seventies to record two solar spectrum atlases extending from the near-UV to the near-IR. From 1977 to 1989, it was also regularly used to record narrow spectral intervals in the mid-infrared, encompassing absorption lines of gases of atmospheric interest, e.g. CH4, HF, HCl, H2O, N2O, NO2, C2H6, O3 and CO. More than 10 thousand spectra were recorded during this period. The total columns derived from these grating spectra have been combined with the FTIR columns derived at the Jungfraujoch since the mid-1980s, in order to derive the temporal evolution of various target gases for the period 1977-2011. [less ▲]

Detailed reference viewed: 9 (2 ULg)
Full Text
See detailChanges in atmospheric composition discerned from long-term NDACC measurements: trends in direct greenhouse gases derived from infrared solar absorption spectra recorded at the Jungfraujoch station
Mahieu, Emmanuel ULg; Duchatelet, Pierre ULg; Zander, Rodolphe ULg et al

Poster (2011, October 25)

The University of Liège (ULg) is operating -under clear sky conditions- two state-of-the-art Fourier Transform Infrared (FTIR) spectrometers at the high-altitude research station of the Jungfraujoch ... [more ▼]

The University of Liège (ULg) is operating -under clear sky conditions- two state-of-the-art Fourier Transform Infrared (FTIR) spectrometers at the high-altitude research station of the Jungfraujoch (Swiss Alps, 46.5ºN, 3580m asl), within the framework of the Network for the Detection of Atmospheric Composition Changes (NDACC). Routine FTIR operation started in 1984. Since then, it has been continued without disruption, allowing collecting more than 45000 high-resolution broadband IR solar absorption spectra, between 2 and 16 µm, using either HgCdTe or InSb detectors as well as a suite of optical filters. Typically, the spectral resolutions achieved lie in the 0.003 to 0.009 cm-1 interval while signal-to-noise ratios of 1000 and more are reached. Numerous narrow-band IR spectra essentially recorded from 1976 to 1989 with grating instruments are also available. Their analyses with modern tools have recently started [Bader et al., 2011] and will be pursued to consistently extend our datasets back in the 1970s. Geophysical parameters are deduced from the ULg observational database either with the SFIT-1, SFIT-2 or PROFFIT-9 algorithm, allowing producing total column time series of the target gases. In addition, information on their vertical distributions with altitude can generally be derived when using SFIT-2 or PROFFIT-9 which both implement the Optimal Estimation Method of Rodgers [1990]. Presently, more than two dozen atmospheric species are systematically retrieved from the Jungfraujoch observations, allowing the monitoring of key constituents of the Earth's atmosphere which play important roles in stratospheric ozone depletion and/or in global warming. This communication will focus on the direct and major greenhouse gases available from our database, namely water vapor, CO2, CH4, N2O, tropospheric ozone, CFC-11, CFC-12, HCFC-22, CCl4, SF6, as well as CF4 which has recently been added to our targets list [Duchatelet et al., 2011]. Trends and associated uncertainties characterizing the available -and often multi-decadal- time series have been derived or updated with a statistical bootstrap resampling tool [Gardiner et al., 2008], they will be presented and critically compared with data available from the literature. [less ▲]

Detailed reference viewed: 101 (21 ULg)
Full Text
See detailFirst retrievals of carbon tetrafluoride (CF4) from ground-based FTIR measurements: production and analysis of the two-decadal time series above the Jungfraujoch
Duchatelet, Pierre ULg; Zander, Rodolphe ULg; Mahieu, Emmanuel ULg et al

in Geophysical Research Abstracts (2011)

Carbon tetrafluoride (CF4 or PFC-14) is a potent greenhouse gas that is almost 7400 times more effective (100-yr horizon) than CO2 on a per molecule basis (IPCC, 2007). This high global warming potential ... [more ▼]

Carbon tetrafluoride (CF4 or PFC-14) is a potent greenhouse gas that is almost 7400 times more effective (100-yr horizon) than CO2 on a per molecule basis (IPCC, 2007). This high global warming potential, coming from its medium absorbance combined with a very long atmospheric lifetime (>50000 years; Ravishankara et al., 1993), makes CF4 a key species among the various greenhouse gases targeted by the Kyoto Protocol. In the Northern hemisphere, current atmospheric CF4 concentrations are close to 78 pptv, with a large fraction (around 35 pptv, Mühle et al., 2010) coming from natural processes like lithospheric emissions (Harnisch and Eisenhauer, 1998). In addition, CF4 has been used increasingly since the eighties in electronic and semiconductors industry. The primary aluminum production processes have also been clearly identified as an important anthropogenic source of CF4 emissions. The partitioning between these two main sources is however problematic, principally due to lacking or incomplete CF4 emission factors from inventories performed in industrial fields (e.g. International Aluminum Institute, 2009). Recent in situ ground level measurements of CF4 in the Northern hemisphere (Khalil et al., 2003; Mühle et al., 2010) or remotely from space (Rinsland et al., 2006) have indicated a significant slowdown in the increase rate of atmospheric CF4. This probably results from measures adopted by the aluminum industry aiming at the reduction of the frequency and duration of “anode effects” and therefore of related PFCs emissions (International Aluminum Institute, 2009). The present contribution reports on the long-term evolution (1990-2010) of the atmospheric carbon tetrafluoride total vertical abundance derived from ground-based Fourier transform infrared (FTIR) solar spectroscopy observations around 1285 cm-1 at the Jungfraujoch (46.5°N, 8.0°E, 3580m asl) and compares our findings with results available in the literature. To our knowledge, no equivalent time series (i.e. based on ground-based FTIR technique) has been published to date. [less ▲]

Detailed reference viewed: 44 (11 ULg)
Full Text
See detailTrend and lifetime of sulfur hexafluoride at mid-latitudes deduced from ACE-FTS occultation measurements
Mahieu, Emmanuel ULg; Duchatelet, Pierre ULg; Zander, Rodolphe ULg et al

in Geophysical Research Abstracts (2011), 13

Sulfur hexafluoride (SF6) is one of the strongest greenhouse gases on a per molecule basis, with a global warming potential of 22800 (100-yr horizon). This is an extremely stable gas in the atmosphere ... [more ▼]

Sulfur hexafluoride (SF6) is one of the strongest greenhouse gases on a per molecule basis, with a global warming potential of 22800 (100-yr horizon). This is an extremely stable gas in the atmosphere, which results in a very long lifetime, with large uncertainties. The value adopted by IPCC is 3200 years, but some studies suggest shorter lifetimes, as low as 800 years. Surface concentrations are now about 7 ppt, with reported trends indicating a steady and strong increase of 0.3 ppt/yr. Most emissions are of anthropogenic origin, related to its use as an insulator in high-voltage electrical installations. Secondary contributions result from magnesium and aluminum production as well as from the manufacturing of semiconductors (see e.g. Levin et al., 2010; Rigby et al., 2010 and references therein). In this contribution, we use occultation measurements performed by the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) instrument, launched in August 2003 onboard the Canadian SCISAT satellite (Bernath et al., 2005). ACE-FTS is still in operation to date, with no significant degradation in its performance. This spectrometer achieves a spectral resolution of 0.02 cm-1 in the broad 750-4400 cm-1 range which covers the unresolved nu-3 band Q branch of SF6 centered at 947.9 cm-1. Signal-to-noise ratios of 200-300 are typically obtained in the spectral region of interest. Version 3 retrievals performed by University of Waterloo give volume mixing ratio profiles of SF6 in the 11-32 km altitude range. We consider all available sunrise and sunset occultation measurements obtained at midlatitudes in both hemispheres to derive the trend of SF6 in the lower stratosphere, from late February 2004 onwards. Consistency between both hemispheres will be investigated. In addition, concurrent N2O measurements are used to evaluate the atmospheric lifetime of SF6, following a method used previously for other long-lived gases (e.g. Zander et al, 1996). Comparisons with trends derived from in situ surface measurements or from ground-based remote-sensing observations (e.g. at the Jungfraujoch station, 46.5ºN) are also included. [less ▲]

Detailed reference viewed: 43 (4 ULg)
Full Text
Peer Reviewed
See detailFormic acid above the Jungfraujoch during 1985–2007: observed variability, seasonality, but no long-term background evolution
Zander, Rodolphe ULg; Duchatelet, Pierre ULg; Mahieu, Emmanuel ULg et al

in Atmospheric Chemistry and Physics (2010), 10(20), 10047--10065

This paper reports on daytime total vertical column abundances of formic acid (HCOOH) above the Northern mid-latitude, high altitude Jungfraujoch station (Switzerland; 46.5° N, 8.0° E, 3580 m alt.). The ... [more ▼]

This paper reports on daytime total vertical column abundances of formic acid (HCOOH) above the Northern mid-latitude, high altitude Jungfraujoch station (Switzerland; 46.5° N, 8.0° E, 3580 m alt.). The columns were derived from the analysis of infrared solar observations regularly performed with high spectral resolution Fourier transform spectrometers during over 1500 days between September 1985 and September 2007. The investigation was based on the spectrometric fitting of five spectral intervals, one encompassing the HCOOH ν6 band Q branch at 1105 cm−1, and four additional ones allowing to optimally account for critical temperature-sensitive or time-evolving interferences by other atmospheric gases, in particular HDO, CCl2F2 and CHClF2. The main results derived from the 22 years long database indicate that the free tropospheric burden of HCOOH above the Jungfraujoch undergoes important short-term daytime variability, diurnal and seasonal modulations, inter-annual anomalies, but no significant long-term background change. A major progress in the remote determination of the atmospheric HCOOH columns reported here has resulted from the adoption of new, improved absolute spectral line intensities for the infrared ν6 band of trans-formic acid, resulting in retrieved free tropospheric loadings being about a factor two smaller than if derived with previous spectroscopic parameters. Implications of this significant change with regard to earlier remote measurements of atmospheric formic acid and comparison with relevant Northern mid-latitude findings, both in situ and remote, will be assessed critically. Sparse HCOOH model predictions will also be evoked and assessed with respect to findings reported here. [less ▲]

Detailed reference viewed: 35 (11 ULg)
Full Text
See detailLong-term trend of carbon tetrachloride (CCl4) from ground-based high resolution infrared solar spectra recorded at the Jungfraujoch
Rinsland, Curtis P.; Mahieu, Emmanuel ULg; Demoulin, Philippe ULg et al

in Geophysical Research Abstracts (2010), 12(EGU2010-1819-3),

The long-term trend of carbon tetrachloride (CCl4) has been retrieved from infrared high resolution solar absorption spectra encompassing the 1999 to 2010 time period. The measurements were recorded with ... [more ▼]

The long-term trend of carbon tetrachloride (CCl4) has been retrieved from infrared high resolution solar absorption spectra encompassing the 1999 to 2010 time period. The measurements were recorded with a Fourier transform spectrometer at the northern mid-latitude, high altitude Jungfraujoch station in Switzerland (46.5°N latitude, 8.0°E longitude, 3580 m altitude). Total columns were derived from the region of the strong CCl4 _3 band at 794 cm􀀀1 accounting for all interfering molecules (e.g. H2O, O3) with significant improvement in the residuals obtained by also taking into account the line mixing in a nearby CO2 Q branch, a procedure not implemented in previous remote sensing CCl4 retrievals though its importance has been noted in several papers. The time series shows a statistically-significant long-term decrease in the CCl4 total atmospheric burden of -1.18_0.10 %/yr, at the 95% confidence level, using 2005 as reference. Furthermore, fit to the total column data set also reveals a seasonal cycle with a peak-to-peak amplitude of 10.2%, with minimum and maximum values found in mid-February and early August, respectively. This seasonal modulation can however be attributed to tropopause height changes throughout the season. The results quantify the continued impact of the regulations implemented by the Montreal Protocol and its strengthening amendments and adjustments for a molecule with high global warming potential. Although a statistically significant decrease in the total column is inferred, the CCl4 molecule remains an important contributor to the stratospheric chlorine budget and burden. [less ▲]

Detailed reference viewed: 56 (5 ULg)
Full Text
See detailRecent trends of inorganic chlorine and halogenated source gases above the Jungfraujoch and Kitt Peak stations derived from high-resolution FTIR solar observations
Mahieu, Emmanuel ULg; Rinsland, Curtis P.; Gardiner, Tom et al

in Geophysical Research Abstracts (2010), 12(EGU2010-2420-3),

The longest series of Fourier Transform Infrared (FTIR) high spectral resolution solar absorption observations are available from the Jungfraujoch and Kitt Peak stations, located at 46.5ºN and 30.9ºN ... [more ▼]

The longest series of Fourier Transform Infrared (FTIR) high spectral resolution solar absorption observations are available from the Jungfraujoch and Kitt Peak stations, located at 46.5ºN and 30.9ºN, respectively. State-of-the-art interferometers are operated at these sites within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). These instruments allow to record spectra on a regular basis, under clear-sky conditions, using a suite of optical filters which altogether cover the 2 to 16 micron spectral range. Numerous absorption features characterized in the HITRAN compilations (e.g. Rothman et al., 2008) are encompassed in this mid-infrared region. Their analyses with either the SFIT-1 or SFIT-2 algorithm allow retrieving total columns of the target gases. Moreover, information on their distribution with altitude can generally be derived when using SFIT-2 which implements the Optimal Estimation Method of Rodgers (1990). Among the two dozen gases of atmospheric interest accessible to the ground-based FTIR technique, we have selected here a suite of long-lived halogenated species: HCl, ClONO2, CCl2F2, CCl3F, CHClF2, CCl4 and SF6. Time series available from the two sites will be presented, compared and critically discussed. In particular, changes in the abundances of theses gases since the peak in inorganic chlorine (Cly, which occurred in 1996-1997) and their intra-annual variability will be characterized with a statistical tool using bootstrap resampling (Gardiner et al., 2008). Trends and their associated uncertainties will be reported and put into perspective with the phase-out regulations of the production of ozone depleting substances adopted and implemented by the Montreal Protocol, its Amendments and Adjustments. For instance, the trends affecting the reservoir species HCl, ClONO2, and their summation which is a good proxy of the total inorganic chlorine, have been calculated using all available daily mean measurements from January 1996 onwards. The following values were obtained for Jungfraujoch, when using 1996 as the reference year: -0.90±0.10%/yr for HCl, -0.92±0.26 %/yr for ClONO2, and -0.96±0.14 %/yr for Cly; in all cases, the uncertainties define the 95% confidence interval around the trend values. For Kitt Peak, the corresponding trends are: -0.55±0.34 %/yr for HCl, -1.27±0.84 %/yr for ClONO2 and -0.61±0.51 %/yr for Cly, they are statistically consistent with the Jungfraujoch rates of decrease. Further trend data will be presented at the EGU General Assembly while supplementary information on Jungfraujoch results will be available from communications at the same meeting by Duchatelet et al. (2010), Lejeune et al (2010) and Rinsland et al (2010). Comparisons with model data are also foreseen. [less ▲]

Detailed reference viewed: 50 (19 ULg)
Full Text
See detailTrends of CO2, CH4 and N2O over 1985-2010 from high-resolution FTIR solar observations at the Jungfraujoch station
Duchatelet, Pierre ULg; Mahieu, Emmanuel ULg; Zander, Rodolphe ULg et al

in Geophysical Research Abstracts (2010), 12(EGU2010-15418-2),

Two state-of-the-art Fourier Transform Infrared (FTIR) spectrometers are operated at the Jungfraujoch station (46.5ºN, 8.0ºE, 3580m asl) within the framework of the Network for the Detection of ... [more ▼]

Two state-of-the-art Fourier Transform Infrared (FTIR) spectrometers are operated at the Jungfraujoch station (46.5ºN, 8.0ºE, 3580m asl) within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). The earliest FTIR observations have been obtained there in 1984. Since then, regular recordings of high-resolution solar absorption spectra have been performed at that site, under clear-sky conditions, allowing to collect almost 29000 observations relevant to the present communication. We present time series of three greenhouse gases targeted by the Kyoto Protocol: CO2, CH4 (and its isotopologue 13CH4) and N2O. These data sets have been obtained with the SFIT-2 algorithm which implements the Optimal Estimation Method of Rodgers (1990). This allows retrieving total columns of the target gases as well as information on their distribution with altitude. For the methane isotopologues and N2O, a Tikhonov L1 regularization scheme has been applied, as part of an harmonization effort carried out within the European HYMN project (see also Dils et al, 2010; Foster et al., 2010). Trends –and their associated uncertainties– characterizing these long series as well as the seasonal modulations have been determined with a statistical tool using bootstrap resampling (Gardiner et al., 2008). Trend values will be presented and critically discussed; in particular, we will investigate if significant changes in the rate of accumulations of these four atmospheric gases occurred over the last 25 years. Numerous additional greenhouse gases are accessible to the FTIR technique. Examples of such trend studies are reported at the EGU General Assembly by Mahieu et al. (2010) and Rinsland et al. (2010). [less ▲]

Detailed reference viewed: 60 (11 ULg)
Full Text
Peer Reviewed
See detailTrend of lower stratospheric methane (CH4) from Atmospheric Chemistry Experiment (ACE) and Atmospheric Trace Molecule Spectroscopy (ATMOS) measurements
Rinsland, Curtis P.; Chiou, Linda S.; Boone, C. D. et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2009), 110(13), 1066-1071

The long-term trend of methane (CH4) in the lower stratosphere has been estimated for the 1985 to 2008 time period by combining spaceborne solar occultation measurements recorded with high spectral ... [more ▼]

The long-term trend of methane (CH4) in the lower stratosphere has been estimated for the 1985 to 2008 time period by combining spaceborne solar occultation measurements recorded with high spectral resolution Fourier transform spectrometers (FTSs). Volume mixing ratio (VMR) FTS measurements from the ATMOS (Atmospheric Trace Molecule Spectroscopy) FTS covering 120-10 hPa (~16 to 30 km altitude) at 25°N-35°N latitude from 1985 and 1994 have been combined with Atmospheric Chemistry Experiment (ACE) SCISAT-1 FTS measurements covering the same latitude and pressure range from 2004 to 2008. The CH4 trend was estimated by referencing the VMRs to those measured for the long-lived constituent N2O to account for the dynamic history of the sampled airmasses. The combined measurement set shows that the VMR increase measured by ATMOS has been replaced by a leveling off during the ACE measurement time period. Our conclusion is consistent with both remote sensing and in situ measurements of the CH4 trend obtained over the same time span. [less ▲]

Detailed reference viewed: 53 (8 ULg)
Full Text
Peer Reviewed
See detailMeasurements of long-term changes in atmospheric OCS (carbonyl sulfide) from infrared solar observations
Rinsland, Curtis P.; Chiou, Linda S.; Mahieu, Emmanuel ULg et al

in Journal of Quantitative Spectroscopy & Radiative Transfer (2008), 109(16), 2679-2686

Multi-decade atmospheric OCS (carbonyl sulfide) infrared measurements have been analyzed with the goal of quantifying long-term changes and evaluating the consistency of the infrared atmospheric OCS ... [more ▼]

Multi-decade atmospheric OCS (carbonyl sulfide) infrared measurements have been analyzed with the goal of quantifying long-term changes and evaluating the consistency of the infrared atmospheric OCS remote-sensing measurement record. Solar-viewing grating spectrometer measurements recorded in April 1951 at the Jungfraujoch station (46.5°N latitude, 8.0°E longitude, 3.58 km altitude) show evidence for absorption by lines of the strong ν3 band of OCS at 2062 cm(−1). The observation predates the earliest previously reported OCS atmosphere remote-sensing measurement by two decades. More recent infrared ground-based measurements of OCS have been obtained primarily with high-resolution solar-viewing Fourier transform spectrometers (FTSs). Long-term trends derived from this record span more than two decades and show OCS columns that have remained constant or have decreased slightly with time since the Mt. Pinatubo eruption, though retrievals assuming different versions of public spectroscopic databases have been impacted by OCS ν3 band line intensity differences of 10%. The lower stratospheric OCS trend has been inferred assuming spectroscopic parameters from the high-resolution transmission (HITRAN) 2004 database. Volume mixing ratio (VMR) profiles measured near 30°N latitude with high-resolution solar-viewing FTSs operating in the solar occultation mode over a 22 years time span were combined. Atmospheric Trace MOlecucle Spectroscopy (ATMOS) version 3 FTS measurements in 1985 and 1994 were used with Atmospheric Chemistry Experiment (ACE) measurements during 2004–2007. Trends were calculated by referencing the measured OCS VMRs to those of the long-lived constituent N2O to account for variations in the dynamic history of the sampled airmasses. Means and 1-sigma standard deviations of VMRs (in ppbv, or 10−9 per unit air volume) averaged over 30–100 hPa from measurements at 25–35°N latitude are 0.334±0.089 ppbv from 1985 (ATMOS Spacelab 3 measurements), 0.297±0.094 ppbv from 1994 ATLAS 3 measurements, 0.326±0.074 ppbv from ACE 2004 measurements, 0.305±0.096 ppbv from ACE 2005 measurements, 0.328±0.074 from ACE 2006 measurements, and 0.305±0.090 ppbv from ACE measurements through August 2007. Assuming these parameters, we conclude that there has been no statistically significant trend in lower stratospheric OCS over the measurement time span. We discuss past measurement sets, quantify the impact of changes in infrared spectroscopic parameters on atmospheric retrievals and trend measurements, and discuss OCS spectroscopic uncertainties of the current ν3 band parameters in public atmospheric databases. [less ▲]

Detailed reference viewed: 42 (9 ULg)
Full Text
Peer Reviewed
See detailValidation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations
Mahieu, Emmanuel ULg; Duchatelet, Pierre ULg; Demoulin, Philippe ULg et al

in Atmospheric Chemistry and Physics (2008), 8

Hydrogen chloride (HCl) and hydrogen fluoride (HF) are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made ... [more ▼]

Hydrogen chloride (HCl) and hydrogen fluoride (HF) are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made halogenated source gases, in particular CFC-11 (CCl3F) and CFC-12 (CCl2F2), during the second half of the 20th century. It is important to continue monitoring the evolution of these source gases and reservoirs, in support of the Montreal Protocol and also indirectly of the Kyoto Protocol. The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) is a space-based instrument that has been performing regular solar occultation measurements of over 30 atmospheric gases since early 2004. In this validation paper, the HCl, HF, CFC-11 and CFC-12 version 2.2 profile data products retrieved from ACE-FTS measurements are evaluated. Volume mixing ratio profiles have been compared to observations made from space by MLS and HALOE, and from stratospheric balloons by SPIRALE, FIRS-2 and Mark-IV. Partial columns derived from the ACE-FTS data were also compared to column measurements from ground-based Fourier transform instruments operated at 12 sites. ACE-FTS data recorded from March 2004 to August 2007 have been used for the comparisons. These data are representative of a variety of atmospheric and chemical situations, with sounded air masses extending from the winter vortex to summer sub-tropical conditions. Typically, the ACE-FTS products are available in the 10-50 km altitude range for HCl and HF, and in the 7-20 and 7-25 km ranges for CFC-11 and -12, respectively. For both reservoirs, comparison results indicate an agreement generally better than 5-10% above 20 km altitude, when accounting for the known offset affecting HALOE measurements of HCl and HF. Larger positive differences are however found for comparisons with single profiles from FIRS-2 and SPIRALE. For CFCs, the few coincident measurements available suggest that the differences probably remain within +/-20%. [less ▲]

Detailed reference viewed: 83 (32 ULg)
Full Text
Peer Reviewed
See detailObservations of long-lived anthropogenic halocarbons at the high-Alpine site of Jungfraujoch (Switzerland) for assessment of trends and European sources
Reimann, Stefan; Vollmer, M. K.; Folini, Doris et al

in Science of the Total Environment (2008), 391

Anthropogenic halocarbons, such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), bromocarbons (halons) and long-lived chlorinated solvents have been measured ... [more ▼]

Anthropogenic halocarbons, such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), bromocarbons (halons) and long-lived chlorinated solvents have been measured continuously at the high-Alpine site of Jungfraujoch (Switzerland) since January 2000. Chloro- and bromo-containing halocarbons are responsible for the stratospheric ozone depletion and will be globally banned from usage within the next years. With the exception of the stable CFC-12 (CF2Cl2), all major CFCs and chlorinated solvents show a negative trend in recent years in their background concentrations at Jungfraujoch. HCFCs, as their first-generation substitute, are still increasing with a few percent per year. However, the frequency and the strength of HCFCs pollution events, which are caused by regional European emissions, are already declining. This can be seen as a sign of the impending ban of these gases within the next years in Europe. On the other hand, HFCs as the second-generation substitutes, are increasing with relative rates of at least 10% per year (e.g. almost 5 ppt per year for HFC-134a). An allocation of European sources was attempted by combining measured concentrations with trajectories of air masses reaching the Jungfraujoch during pollution events. Potential source regions could be detected in Italy, France, Spain and Germany. [less ▲]

Detailed reference viewed: 25 (7 ULg)