References of "Young, D. T"
     in
Bookmark and Share    
See detailThe Solar Wind Upstream of Saturn: Cassini Plasma measurements and Saturn's Aurora
Crary, F. J.; Young, D. T.; Barraclough, B. et al

Conference (2004, May 17)

For a full solar rotation in January and early February, 2004, the Cassini spacecraft and Hubble and Chandra Space Telescopes were used to make simultaneous observations of the solar wind and Saturn's ... [more ▼]

For a full solar rotation in January and early February, 2004, the Cassini spacecraft and Hubble and Chandra Space Telescopes were used to make simultaneous observations of the solar wind and Saturn's aurora. We report here on initial results from data taken with the Cassini Plasma Spectrometer's electron and high-resolution ion sensors in the solar wind upstream of Saturn. These measurements, combined with those of other particles and fields instruments on Cassini show two shock and corotating interaction regions, which reached Saturn approximately twelve hours later. An auroral response to each of these events was observed by the Hubble Space Telescope. [less ▲]

Detailed reference viewed: 63 (4 ULg)
Full Text
Peer Reviewed
See detailDYNAMO: a Mars upper atmosphere package for investigating solar wind interaction and escape processes, and mapping Martian fields
Chassefière, E.; Nagy, A.; Mandea, M. et al

in Advances in Space Research (2004), 33

DYNAMO is a small multi-instrument payload aimed at characterizing current atmospheric escape, which is still poorly constrained, and improving gravity and magnetic field representations, in order to ... [more ▼]

DYNAMO is a small multi-instrument payload aimed at characterizing current atmospheric escape, which is still poorly constrained, and improving gravity and magnetic field representations, in order to better understand the magnetic, geologic and thermal history of Mars. The internal structure and evolution of Mars is thought to have influenced climate evolution. The collapse of the primitive magnetosphere early in Mars history could have enhanced atmospheric escape and favored transition to the present arid climate. These objectives are achieved by using a low periapsis orbit. DYNAMO has been proposed in response to the AO released in February 2002 for instruments to be flown as a complementary payload onboard the CNES Orbiter to Mars (MO-07), foreseen to be launched in 2007 in the framework of the French PREMIER Mars exploration program. MO-07 orbital phase 2b (with an elliptical orbit of periapsis 170 km), and in a lesser extent 2a, offers an unprecedented opportunity to investigate by in situ probing the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, and therefore the present atmospheric escape rate. Ultraviolet remote sensing is an essential complement to characterize high, tenuous, layers of the atmosphere. One Martian year of operation, with about 5,000 low passes, should allow DYNAMO to map in great detail the residual magnetic field, together with the gravity field. Additional data on the internal structure will be obtained by mapping the electric conductivity, sinergistically with the NETLANDER magnetic data. Three options have been recommended by the International Science and Technical Review Board (ISTRB), who met on July 1st and 2nd, 2002. One of them is centered on DYNAMO. The final choice, which should be made before the end of 2002, will depend on available funding resources at CNES. [less ▲]

Detailed reference viewed: 43 (2 ULg)
See detailCassini UVIS Auroral Observations of Jupiter
Pryor, W.; Stewart, A. I. F.; Esposito, L. et al

Conference (2002, July 29)

Detailed reference viewed: 1 (0 ULg)
See detailSoft X-ray emissions from planets, moons, and comets
Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F. et al

Conference (2002)

A wide variety of solar system bodies are now known to radiate in the soft X-ray energy (<5 keV) regime. These include planets (Earth, Jupiter, Venus, Saturn, Mars): bodies having thick atmospheres, with ... [more ▼]

A wide variety of solar system bodies are now known to radiate in the soft X-ray energy (<5 keV) regime. These include planets (Earth, Jupiter, Venus, Saturn, Mars): bodies having thick atmospheres, with or without intrinsic magnetic field; planetary satellites (Moon, Io, Europa, Ganymede): bodies with thin or no atmospheres; and comets and Io plasma torus: bodies having extended tenuous atmospheres. Several different mechanisms have been proposed to explain the generation of soft X-rays from these objects, whereas in the hard X-ray energy range (>10 keV) X-rays mainly result from the electron bremsstrahlung process. In this paper we present a brief review of the X-ray observations on each of the planetary bodies and discuss their characteristics and proposed source mechanisms. [less ▲]

Detailed reference viewed: 9 (0 ULg)
See detailCassini UVIS Observations of Jupiter's Auroral Variability
Pryor, W. R.; Stewart, A. F.; Esposito, L. W. et al

Poster (2001, October 27)

In the December 2000 Cassini flyby of the Jupiter system, the Cassini Ultraviolet Imaging Spectrograph (UVIS) monitored Jupiter's auroral emissions from day 275 of 2000 to day 81 of 2001. Much of the ... [more ▼]

In the December 2000 Cassini flyby of the Jupiter system, the Cassini Ultraviolet Imaging Spectrograph (UVIS) monitored Jupiter's auroral emissions from day 275 of 2000 to day 81 of 2001. Much of the auroral variability can be explained simply in terms of the rotation of Jupiter's auroral arcs (measured by Hubble Space Telescope) with the planet. However, several brightening events were seen in which the global auroral output increased by a factor of 2-4. These events persisted over a number of hours and are tied to large solar coronal mass ejection events. The auroral UV emissions from these bursts also correspond to hectometric radio emission increases reported by the Galileo and Cassini Radio and Plasma Wave experiments. The 2 largest events were on 2000 day 280 and on 2000 day 325-326. We will look at these events in some detail, and compare them with corresponding information on the interplanetary magnetic field, solar wind conditions, and energetic particle environment to try to understand the cause of these auroral brightness increases. [less ▲]

Detailed reference viewed: 6 (1 ULg)