References of "Yan, Yajing"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailLocal ensemble assimilation scheme with global constraints and conservation
Barth, Alexander ULiege; Yan, Yajing ULiege; Alvera Azcarate, Aida ULiege et al

in Ocean Dynamics (2016), 66

Ensemble assimilation schemes applied in their original, global formulation respect linear conservation properties if the ensemble perturbations are set up accordingly. For realistic ocean systems, only a ... [more ▼]

Ensemble assimilation schemes applied in their original, global formulation respect linear conservation properties if the ensemble perturbations are set up accordingly. For realistic ocean systems, only a relatively small number of ensemble members can be calculated. A localization of the ensemble increment is therefore necessary to filter out spurious long-range correlations. The conservation of the global properties will be lost if the assimilation is performed locally, since the conservation requires a coupling between all model grid points which is removed by the localization. The distribution of ocean observations is often highly inhomogeneous. Systematic errors of the observed parts of the ocean state can lead to spurious adjustment of the non-observed parts via data assimilation and thus to a spurious increase or decrease in long-term simulations of global properties which should be conserved. In this paper, we propose a local assimilation scheme (with different variants and assumptions) which can satisfy global conservation properties. The proposed scheme can also be used for non-local observation operators. Different variants of the proposed scheme are tested in an idealized model and compared to the traditional covariance localization with an ad-hoc step enforcing conservation. It is shown that the inclusion of the conservation property reduces the total RMS error and that the presented stochastic and deterministic schemes avoiding error space rotation provide better results than the traditional covariance localization. [less ▲]

Detailed reference viewed: 40 (3 ULiège)
Full Text
Peer Reviewed
See detailLocal ensemble assimilation scheme with global constraints and conservation
Barth, Alexander ULiege; Yan, Yajing ULiege; Canter, Martin ULiege et al

Conference (2015)

Ensemble assimilation schemes applied in their original, global formulation have no problem in respecting linear conservation properties if the ensemble perturbations are setup accordingly. For realistic ... [more ▼]

Ensemble assimilation schemes applied in their original, global formulation have no problem in respecting linear conservation properties if the ensemble perturbations are setup accordingly. For realistic ocean systems, only a relatively small number of ensemble members can be calculated. A localization of the ensemble increment is thus necessary to filter out spurious long-range correlations. However, the conservation of the global property will be lost if the assimilation is performed locally since the conservation requires a coupling between model grid points, which is filtered out by the localization. In the ocean, the distribution of observations is highly inhomogeneous. System- atic errors of the observed parts of the ocean state can lead to spurious systematic adjust- ments of the non-observed part of the ocean state due to data assimilation. As a result, global properties which should be conserved, increase or decrease in long-term simulations. We propose an assimilation scheme (with stochastic or deterministic analysis steps) which is formulated globally (i.e. for the whole state vector) but where spurious long-range correlations can be filtered out. The scheme can thus be used to enforce global conservation properties and non-local observation operators. Both aspects are indeed linked since one can introduce the global conservation as a weak constraint by using a global ob- servation operator. The conserved property becomes thus an observed value. The proposed scheme is tested with the Kuramoto-Sivashinsky model which is conservative. The benefit compared to the traditional covariance localization scheme (with an ad-hoc step enforcing conservation) where observations are assimilated sequentially is shown. The assimilation scheme is suitable to be implemented on parallel computers where the number of available computing cores is a multiple of the ensemble size. [less ▲]

Detailed reference viewed: 27 (3 ULiège)
Full Text
See detailLocal ensemble assimilation scheme with global constraints and conservation
Barth, Alexander ULiege; Yan, Yajing ULiege; Canter, Martin ULiege et al

Poster (2014, April)

Ensemble assimilation schemes applied in their original, global formulation have no problem in respecting linear conservation properties if the ensemble perturbations are setup accordingly. For realistic ... [more ▼]

Ensemble assimilation schemes applied in their original, global formulation have no problem in respecting linear conservation properties if the ensemble perturbations are setup accordingly. For realistic ocean systems, only a relatively small number of ensemble members can be calculated. A localization of the ensemble increment is thus necessary to filter out spurious long-range correlations. However, the conservation of the global property will be lost if the assimilation is performed locally since the conservation requires a coupling between model grid points, which is filtered out by the localization. In the ocean, the distribution of observations is highly inhomogeneous. Systematic errors of the observed parts of the ocean state can lead to spurious systematic adjustments of the non-observed part of the ocean state due to data assimilation. As a result, global properties which should be conserved, increase or decrease in long-term simulations. We propose an assimilation scheme (with stochastic or deterministic analysis steps) which is formulated globally (i.e. for the whole state vector) but where spurious long-range correlations can be filtered out. The scheme can thus be used to enforce global conservation properties and non-local observation operators. Both aspects are indeed linked since one can introduce the global conservation as a weak constraint by using a global observation operator. The conserved property becomes thus an observed value. The proposed scheme is tested with the Kuramoto-Sivashinsky model which is conservative. The benefit compared to the traditional covariance localization scheme (with an ad-hoc step enforcing conservation) where observations are assimilated sequentially is shown. The assimilation scheme is suitable to be implemented on parallel computers where the number of available computing cores is a multiple of the ensemble size. [less ▲]

Detailed reference viewed: 56 (3 ULiège)