References of "Wheatley, P. J"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe PLATO 2.0 Mission
Rauer, H.; Catala, C.; Aerts, C. et al

in Experimental Astronomy (2014)

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental ... [more ▼]

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science. [less ▲]

Detailed reference viewed: 7 (3 ULg)
Full Text
See detailWASP-104b and WASP-106b: two transiting hot Jupiters in 1.75-day and 9.3-day orbits
Smith, A. M. S.; Anderson, D. R.; Armstrong, D. J. et al

E-print/Working paper (2014)

We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75 d ... [more ▼]

We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75 d, whereas WASP-106b has the fourth-longest orbital period of any planet discovered by means of transits observed from the ground, orbiting every 9.29 d. Each planet is more massive than Jupiter (WASP-104b has a mass of 1.27±0.05 MJup, while WASP-106b has a mass of 1.93±0.08 MJup). Both planets are just slightly larger than Jupiter, with radii of 1.14±0.04 and 1.09±0.04 RJup for WASP-104 and WASP-106 respectively. No significant orbital eccentricity is detected in either system, and while this is not surprising in the case of the short-period WASP-104b, it is interesting in the case of WASP-106b, because many otherwise similar planets are known to have eccentric orbits. [less ▲]

Detailed reference viewed: 3 (0 ULg)
Full Text
See detailWASP-20b and WASP-28b: a hot Saturn and a hot Jupiter in near-aligned orbits around solar-type stars
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

E-print/Working paper (2014)

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 $M_{\rm Jup}$; 1.46 $R ... [more ▼]

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 $M_{\rm Jup}$; 1.46 $R_{\rm Jup}$) in a 4.9-day, near-aligned ($\lambda = 8.1 \pm 3.6^\circ$) orbit around CD-24 102 ($V$=10.7; F9). WASP-28b is an inflated, Jupiter-mass planet (0.91 $M_{\rm Jup}$; 1.21 $R_{\rm Jup}$) in a 3.4-day, near-aligned ($\lambda = 8 \pm 18^\circ$) orbit around a $V$=12, F8 star. As intermediate-mass planets in short orbits around aged, cool stars ($7^{+2}_{-1}$ Gyr for WASP-20 and $5^{+3}_{-2}$ Gyr for WASP-28; both with $T_{\rm eff}$ < 6250 K), their orbital alignment is consistent with the hypothesis that close-in giant planets are scattered into eccentric orbits with random alignments, which are then circularised and aligned with their stars' spins via tidal dissipation. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailHigh-frequency A-type pulsators discovered using SuperWASP
Holdsworth, Daniel L.; Smalley, B.; Gillon, Michaël ULg et al

in Monthly Notices of the Royal Astronomical Society (2014)

We present the results of a survey using the WASP archive to search for high-frequency pulsations in F-, A- and B-type stars. Over 1.5 million targets have been searched for pulsations with amplitudes ... [more ▼]

We present the results of a survey using the WASP archive to search for high-frequency pulsations in F-, A- and B-type stars. Over 1.5 million targets have been searched for pulsations with amplitudes greater than 0.5 millimagnitude. We identify over 350 stars which pulsate with periods less than 30 min. Spectroscopic follow-up of selected targets has enabled us to confirm 10 new rapidly oscillating Ap stars, 13 pulsating Am stars and the fastest known δ Scuti star. We also observe stars which show pulsations in both the high-frequency domain and the low-frequency δ Scuti range. This work shows the power of the WASP photometric survey to find variable stars with amplitudes well below the nominal photometric precision per observation. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailEclipsing Am binary systems in the SuperWASP survey
Smalley, B.; Southworth, J.; Pintado, O. I. et al

in Astronomy and Astrophysics (2014), 564

The results of a search for eclipsing Am star binaries using photometry from the SuperWASP survey are presented. The light curves of 1742 Am stars fainter than V = 8.0 were analysed for the presence of ... [more ▼]

The results of a search for eclipsing Am star binaries using photometry from the SuperWASP survey are presented. The light curves of 1742 Am stars fainter than V = 8.0 were analysed for the presence of eclipses. A total of 70 stars were found to exhibit eclipses, with 66 having sufficient observations to enable orbital periods to be determined and 28 of which are newly identified eclipsing systems. Also presented are spectroscopic orbits for 5 of the systems. The number of systems and the period distribution is found to be consistent with that identified in previous radial velocity surveys of "classical" Am stars. [less ▲]

Detailed reference viewed: 2 (0 ULg)
Full Text
Peer Reviewed
See detailDiscovery of WASP-65b and WASP-75b: Two Hot Jupiters Without Highly Inflated Radii
Gómez Maqueo Chew, Y.; Faedi, F.; Pollacco, D. et al

in Astronomy and Astrophysics (2013)

We report the discovery of two transiting hot Jupiters, WASP-65b (Mpl = 1.55 ± 0.16 MJ; Rpl = 1.11 ± 0.06 RJ), and WASP-75b (Mpl = 1.07 ± 0.05 MJ; Rpl = 1.27 ± 0.05 RJ). They orbit their host star every ... [more ▼]

We report the discovery of two transiting hot Jupiters, WASP-65b (Mpl = 1.55 ± 0.16 MJ; Rpl = 1.11 ± 0.06 RJ), and WASP-75b (Mpl = 1.07 ± 0.05 MJ; Rpl = 1.27 ± 0.05 RJ). They orbit their host star every ~2.311, and ~2.484 days, respectively. The planet host WASP-65 is a G6 star (Teff = 5600 K, [Fe/H] = -0.07 ± 0.07, age ≳8 Gyr); WASP-75 is an F9 star (Teff = 6100 K, [Fe/H] = 0.07 ± 0.09, age ~ 3 Gyr). WASP-65b is one of the densest known exoplanets in the mass range 0.1 and 2.0 MJ (rhopl = 1.13 ± 0.08 rhoJ), a mass range where a large fraction of planets are found to be inflated with respect to theoretical planet models. WASP-65b is one of only a handful of planets with masses of ~1.5 MJ, a mass regime surprisingly underrepresented among the currently known hot Jupiters. The radius of WASP-75b is slightly inflated (≲10%) as compared to theoretical planet models with no core, and has a density similar to that of Saturn (rhopl = 0.52 ± 0.06 rhoJ). [less ▲]

Detailed reference viewed: 19 (2 ULg)
Full Text
Peer Reviewed
See detailThermal emission at 3.6-8 micron from WASP-19b: a hot Jupiter without a stratosphere orbiting an active star
Anderson, D. R.; Smith, A. M. S.; Madhusudhan, N. et al

in Monthly Notices of the Royal Astronomical Society (2013), 430(4), 3422-3431

We report detection of thermal emission from the exoplanet WASP-19b at 3.6, 4.5, 5.8 and 8.0 μm. We used the InfraRed Array Camera on the Spitzer Space Telescope to observe two occultations of WASP-19b by ... [more ▼]

We report detection of thermal emission from the exoplanet WASP-19b at 3.6, 4.5, 5.8 and 8.0 μm. We used the InfraRed Array Camera on the Spitzer Space Telescope to observe two occultations of WASP-19b by its host star. We combine our new detections with previous measurements of WASP-19b's emission at 1.6 and 2.09 μm to construct a spectral energy distribution of the planet's dayside atmosphere. By comparing this with model-atmosphere spectra, we find that the dayside atmosphere of WASP-19b lacks a strong temperature inversion. As WASP-19 is an active star (log R'HK = -4.50 ± 0.03), this finding supports the hypothesis of Knutson, Howard and Isaacson that inversions are suppressed in hot Jupiters orbiting active stars. The available data are unable to differentiate between a carbon-rich and an oxygen-rich atmosphere. [less ▲]

Detailed reference viewed: 19 (5 ULg)
Full Text
Peer Reviewed
See detailWASP-54b, WASP-56b and WASP-57b: Three new sub-Jupiter mass planets from SuperWASP
Faedi, F.; Pollacco, D.; Barros, S. C. C. et al

in Astronomy and Astrophysics (2013), 551

We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636+0.025-0.024RJ. It orbits a F9 star, evolving off the main sequence ... [more ▼]

We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636+0.025-0.024RJ. It orbits a F9 star, evolving off the main sequence, every 3.69 days. Our MCMC fit of the system yields a slightly eccentric orbit (e = 0.067+0.033-0.025) for WASP-54b. We investigated further the veracity of our detection of the eccentric orbit for WASP-54b, and we find that it could be real. However, given the brightness of WASP-54 V = 10.42 mag, we encourage observations of a secondary eclipse to draw robust conclusions on both the orbital eccentricity and the thermal structure of the planet. WASP-56b and WASP-57b have masses of 0.571+0.034-0.035MJ and 0.672+0.049-0.046MJ, respectively; and radii of 1.092+0.035-0.033RJ for WASP-56b and 0.916+0.017-0.014RJ for WASP-57b. They orbit main sequence stars of spectral type G6 every 4.67 and 2.84 days, respectively. WASP-56b and WASP-57b show no radius anomaly and a high density possibly implying a large core of heavy elements; possibly as high as ~50 M⊕ in the case of WASP-57b. However,the composition of the deep interior of exoplanets remains still undetermined. Thus, more exoplanet discoveries such as the ones presented in this paper, are needed to understand and constrain giant planets' physical properties. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-80b: a gas giant transiting a cool dwarf
Triaud, A. H. M. J.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2013), 551

We report the discovery of a planet transiting the star <ASTROBJ>WASP-80</ASTROBJ> (<ASTROBJ>1SWASP J201240.26-020838.2</ASTROBJ>; <ASTROBJ>2MASS J20124017-0208391</ASTROBJ>; <ASTROBJ>TYC 5165-481-1 ... [more ▼]

We report the discovery of a planet transiting the star <ASTROBJ>WASP-80</ASTROBJ> (<ASTROBJ>1SWASP J201240.26-020838.2</ASTROBJ>; <ASTROBJ>2MASS J20124017-0208391</ASTROBJ>; <ASTROBJ>TYC 5165-481-1</ASTROBJ>; <ASTROBJ>BPM 80815</ASTROBJ>; V = 11.9, K = 8.4). Our analysis shows this is a 0.55 ± 0.04 M[SUB]jup[/SUB], 0.95 ± 0.03 R[SUB]jup[/SUB] gas giant on a circular 3.07 day orbit around a star with a spectral type between K7V and M0V. This system produces one of the largest transit depths so far reported, making it a worthwhile target for transmission spectroscopy. We find a large discrepancy between the vsini[SUB]⋆[/SUB] inferred from stellar line broadening and the observed amplitude of the Rossiter-McLaughlin effect. This can be understood either by an orbital plane nearly perpendicular to the stellar spin or by an additional, unaccounted for source of broadening. Using WASP-South photometric observations, from Sutherland (South Africa), confirmed with the 60 cm TRAPPIST robotic telescope, EulerCam, and the CORALIE spectrograph on the Swiss 1.2 m Euler Telescope, and HARPS on the ESO 3.6 m (Prog ID 089.C-0151), all three located at La Silla Observatory, Chile.Radial velocity and photometric data are available in electronic form at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A>(<A href="http://130.79.128.5">130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A80">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A80</A> [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
Peer Reviewed
See detailWASP-42 b and WASP-49 b: two new transiting sub-Jupiters
Lendl, M; Anderson, D R; Collier-Cameron, A et al

in Astronomy and Astrophysics (2012), 544

We report the discovery of two new transiting planets from the WASP survey. WASP-42 b is a 0.500 +- 0.035 M_J planet orbiting a K1 star at a separation of 0.0548 +- 0.0017 AU with a period of 4.9816872 ... [more ▼]

We report the discovery of two new transiting planets from the WASP survey. WASP-42 b is a 0.500 +- 0.035 M_J planet orbiting a K1 star at a separation of 0.0548 +- 0.0017 AU with a period of 4.9816872 +- 0.0000073 days. The radius of WASP-42 is 1.080 +- 0.057 R_J while its equilibrium temperature is T_eq = 995 +- 34 K. We detect some evidence of a small but non-zero eccentricity of e = 0.060 +- 0.013. WASP-49 b is a 0.378 +- 0.027 M_J planet around an old G6 star. It has a period of 2.7817387 +- 5.6 x 10-6 days and a separation of 0.0379 +- 0.0011 AU. This planet is slightly bloated, having a radius of 1.115 +- 0.056 R_J and an equilibrium temperature of T_eq = 1369 +- 42 K. Both planets have been followed up intensively in photometry, in total we have obtained 5 full and one partial transit light curves of WASP-42 and 4 full and one partial light curves of WASP-49 using the Euler-Swiss, TRAPPIST and Faulkes South telescopes. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailA brown dwarf orbiting an M-dwarf: MOA 2009-BLG-411L
Bachelet, E.; Fouqué, P.; Han, C. et al

in Astronomy and Astrophysics (2012), 547

Context. Caustic crossing is the clearest signature of binary lenses in microlensing. In the present context, this signature is diluted by the large source star but a detailed analysis has allowed the ... [more ▼]

Context. Caustic crossing is the clearest signature of binary lenses in microlensing. In the present context, this signature is diluted by the large source star but a detailed analysis has allowed the companion signal to be extracted. <BR /> Aims: MOA 2009-BLG-411 was detected on August 5, 2009 by the MOA-Collaboration. Alerted as a high-magnification event, it was sensitive to planets. Suspected anomalies in the light curve were not confirmed by a real-time model, but further analysis revealed small deviations from a single lens extended source fit. <BR /> Methods: Thanks to observations by all the collaborations, this event was well monitored. We first decided to characterize the source star properties by using a more refined method than the classical one: we measure the interstellar absorption along the line of sight in five different passbands (VIJHK). Secondly, we model the lightcurve by using the standard technique: make (s,q,α) grids to look for local minima and refine the results by using a downhill method (Markov chain Monte Carlo). Finally, we use a Galactic model to estimate the physical properties of the lens components. <BR /> Results: We find that the source star is a giant G star with radius 9 R[SUB]&sun;[/SUB]. The grid search gives two local minima, which correspond to the theoretical degeneracy s ≡ s[SUP]-1[/SUP]. We find that the lens is composed of a brown dwarf secondary of mass M[SUB]S[/SUB] = 0.05 M[SUB]&sun;[/SUB] orbiting a primary M-star of mass M[SUB]P[/SUB] = 0.18 M[SUB]&sun;[/SUB]. We also reveal a new mass-ratio degeneracy for the central caustics of close binaries. <BR /> Conclusions: As far as we are aware, this is the first detection using the microlensing technique of a binary system in our Galaxy composed of an M-star and a brown dwarf. Appendix is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailThermal emission at 4.5 and 8 micron of WASP-17b, an extremely large planet in a slightly eccentric orbit
Anderson, D. R.; Smith, A. M. S.; Lanotte, Audrey ULg et al

in Monthly Notices of the Royal Astronomical Society (2011), 416(3), 2108-2122

We report the detection of thermal emission at 4.5 and 8 micron from the planet WASP-17b. We used Spitzer to measure the system brightness at each wavelength during two occultations of the planet by its ... [more ▼]

We report the detection of thermal emission at 4.5 and 8 micron from the planet WASP-17b. We used Spitzer to measure the system brightness at each wavelength during two occultations of the planet by its host star. By combining the resulting light curves with existing transit light curves and radial velocity measurements in a simultaneous analysis, we find the radius of WASP-17b to be 2.0 Rjup, which is 0.2 Rjup larger than any other known planet and 0.7 Rjup larger than predicted by the standard cooling theory of irradiated gas giant planets. We find the retrograde orbit of WASP-17b to be slightly eccentric, with 0.0012 < e < 0.070 (3 sigma). Such a low eccentricity suggests that, under current models, tidal heating alone could not have bloated the planet to its current size, so the radius of WASP-17b is currently unexplained. From the measured planet-star flux-density ratios we infer 4.5 and 8 micron brightness temperatures of 1881 +/- 50 K and 1580 +/- 150 K, respectively, consistent with a low-albedo planet that efficiently redistributes heat from its day side to its night side. [less ▲]

Detailed reference viewed: 25 (7 ULg)
Full Text
Peer Reviewed
See detailWASP-35b, WASP-48b and WASP-51b: Two new planets and an independent discovery of HAT-P-30b
Enoch, B.; Anderson, D. R.; Barros, S. C. C. et al

in Astronomical Journal (The) (2011), 142(3), 86

We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star ... [more ▼]

We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star of 1.75 R_sun in the Northern hemisphere, and the independent discovery of HAT-P-30b / WASP-51b, a new planet in the Northern hemisphere. Using WASP, RISE, FTS and TRAPPIST photometry, with CORALIE, SOPHIE and NOT spectroscopy, we determine that WASP-35b has a mass of 0.72 +/- 0.06 M_J and radius of 1.32 +/- 0.03 R_J, and orbits with a period of 3.16 days, WASP-48b has a mass of 0.98 +/- 0.09 M_J, radius of 1.67 +/- 0.08 R_J and orbits in 2.14 days, while WASP-51b, with an orbital period of 2.81 days, is found to have a mass of 0.76 +/- 0.05 M_J and radius of 1.42 +/- 0.04 R_J, agreeing with values of 0.71 +/- 0.03 M_J and 1.34 +/- 0.07 R_J reported for HAT-P-30b. [less ▲]

Detailed reference viewed: 25 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-50 b: a hot Jupiter transiting a moderately active solar-type star
Gillon, Michaël ULg; Doyle, A. P.; Lendl, M. et al

in Astronomy and Astrophysics (2011), 533

We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295 ± 0.0009 AU) around a moderately bright (V = 11.6, K = 10) G9 dwarf (0.89 ± 0.08 M[SUB]&sun;[/SUB], 0.84 ± 0 ... [more ▼]

We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295 ± 0.0009 AU) around a moderately bright (V = 11.6, K = 10) G9 dwarf (0.89 ± 0.08 M[SUB]&sun;[/SUB], 0.84 ± 0.03 R[SUB]&sun;[/SUB]) in the Southern constellation Eridanus. Thanks to high-precision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50 b, are well constrained to 1.47 ± 0.09 M[SUB]Jup[/SUB] and 1.15 ± 0.05 R[SUB]Jup[/SUB], respectively. The transit ephemeris is 2 455 558.6120 (±0.0002) + N × 1.955096 (±0.000005) HJD[SUB]UTC[/SUB]. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R'[SUB]HK = -4.67[/SUB]) and rotational period (P[SUB]rot[/SUB] = 16.3 ± 0.5 days) of the host star suggest an age of 0.8 ± 0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (ρ[SUB]∗[/SUB] = 1.48 ± 0.10 ρ[SUB]&sun;[/SUB], T[SUB]eff[/SUB] = 5400 ± 100 K, [Fe/H] = -0.12 ± 0.08) which favors an age of 7 ± 3.5 Gy. This discrepancy could be explained by the tidal and magnetic influence of the planet on the star, in good agreement with the observations that stars hosting hot Jupiters tend to show faster rotation and magnetic activity. We measure a stellar inclination of 84[SUB]-31[SUP]+6[/SUP][/SUB] deg, disfavoring a high stellar obliquity. Thanks to its large irradiation and the relatively small size of its host star, WASP-50 b is a good target for occultation spectrophotometry, making it able to constrain the relationship between hot Jupiters' atmospheric thermal profiles and the chromospheric activity of their host stars. The photometric time-series used in this work are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A88">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A88</A> [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailWASP-40b: Independent Discovery of the 0.6 M Transiting Exoplanet HAT-P-27b
Anderson, D. R.; Barros, S. C. C.; Boisse, I. et al

in Publications of the Astronomical Society of the Pacific [=PASP] (2011), 123

From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 M planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G ... [more ▼]

From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 M planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G-type or early K-type and likely has a metallicity greater than solar ([Fe/H]=0.14±0.11). The planet's mass and radius are typical of the known hot Jupiters, thus adding another system to the apparent pileup of transiting planets with periods near 3-4 days. Our parameters match those of the recent HATnet announcement of the same planet, thus giving confidence in the techniques used. We report a possible indication of stellar activity in the host star. [less ▲]

Detailed reference viewed: 17 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-34b: a near-grazing transiting sub-Jupiter-mass exoplanet in a hierarchical triple system
Smalley, B.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2011), 526

We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric ... [more ▼]

We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric orbit (e = 0.038 +/- 0.012). We find a planetary mass of 0.59 +/- 0.01 M_Jup and radius of 1.22 ^{+0.11}_{-0.08} R_Jup. There is a linear trend in the radial velocities of 55+/-4 m/s/y indicating the presence of a long-period third body in the system with a mass > 0.45 M_Jup at a distance of >1.2 AU from the host star. This third-body is either a low-mass star, white dwarf, or another planet. The transit depth ((R_P/R_*)^2 = 0.0126) and high impact parameter (b = 0.90) suggest that this could be the first known transiting exoplanet expected to undergo grazing transits, but with a confidence of only ~80%. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-22 b: A Transiting "Hot Jupiter" Planet in a Hierarchical Triple System
Maxted, P. F. L.; Anderson, D. R.; Gillon, Michaël ULg et al

in Astrophysical Journal (2010), 140(6), 2007-2012

We report the discovery of a transiting planet orbiting the star TYC 6446-326-1. The star, WASP-22, is a moderately bright (V = 12.0) solar-type star (T[SUB]eff[/SUB] = 6000 ± 100 K, [Fe/H] = –0.05 ± 0.08 ... [more ▼]

We report the discovery of a transiting planet orbiting the star TYC 6446-326-1. The star, WASP-22, is a moderately bright (V = 12.0) solar-type star (T[SUB]eff[/SUB] = 6000 ± 100 K, [Fe/H] = –0.05 ± 0.08). The light curve of the star obtained with the WASP-South instrument shows periodic transit-like features with a depth of about 1% and a duration of 0.14 days. The presence of a transit-like feature in the light curve is confirmed using z-band photometry obtained with Faulkes Telescope South. High-resolution spectroscopy obtained with the CORALIE and HARPS spectrographs confirms the presence of a planetary mass companion with an orbital period of 3.533 days in a near-circular orbit. From a combined analysis of the spectroscopic and photometric data assuming that the star is a typical main-sequence star we estimate that the planet has a mass M [SUB]p[/SUB] = 0.56 ± 0.02M [SUB]Jup[/SUB] and a radius R [SUB]p[/SUB] = 1.12 ± 0.04R [SUB]Jup[/SUB]. In addition, there is a linear trend of 40 m s[SUP]–1[/SUP] yr[SUP]–1[/SUP] in the radial velocities measured over 16 months, from which we infer the presence of a third body with a long-period orbit in this system. The companion may be a low mass M-dwarf, a white dwarf, or a second planet. [less ▲]

Detailed reference viewed: 37 (4 ULg)
Full Text
Peer Reviewed
See detailSpin-orbit angle measurements for six southern transiting planets. New insights into the dynamical origins of hot Jupiters
Triaud, A H M J; Collier Cameron, A.; Queloz, D. et al

in Astronomy and Astrophysics (2010), 524

Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time ... [more ▼]

Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time, making it hard to distinguish between models. The obliquity of an orbit with respect to the stellar rotation axis is thought to be more stable than other parameters such as eccentricity. Most planets, to date, appear aligned with the stellar rotation axis; the few misaligned planets so far detected are massive (> 2 M[SUB]J[/SUB]). <BR /> Aims: Our goal is to measure the degree of alignment between planetary orbits and stellar spin axes, to search for potential correlations with eccentricity or other planetary parameters and to measure long term radial velocity variability indicating the presence of other bodies in the system. <BR /> Methods: For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle β between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We used a combined analysis of photometry and radial velocities, fitting model parameters with the Markov Chain Monte Carlo method. After obtaining β we attempt to statistically determine the distribution of the real spin-orbit angle ψ. <BR /> Results: We found that three of our targets have β above 90°: WASP-2b: β = 153°[SUP]+11[/SUP][SUB]-15[/SUB], WASP-15b: β = 139.6°[SUP]+5.2[/SUP][SUB]-4.3[/SUB] and WASP-17b: β = 148.5°[SUP]+5.1[/SUP][SUB]-4.2[/SUB]; the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0°. We find no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All six orbits are close to circular, with only one firm detection of eccentricity e = 0.00848[SUP]+0.00085[/SUP][SUB]-0.00095[/SUB] in WASP-18b. No long-term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of β and our six and transforming them into a distribution of ψ we find that between about 45 and 85% of hot Jupiters have ψ > 30°. <BR /> Conclusions: Most hot Jupiters are misaligned, with a large variety of spin-orbit angles. We find observations and predictions using the Kozai mechanism match well. If these observational facts are confirmed in the future, we may then conclude that most hot Jupiters are formed from a dynamical and tidal origin without the necessity to use type I or II migration. At present, standard disc migration cannot explain the observations without invoking at least another additional process. Using observations with the high resolution échelle spectrograph HARPS mounted on the ESO 3.6 m (under proposals 072.C-0488, 082.C-0040 & 283.C-5017), and with the high resolution échelle spectrograph CORALIE on the 1.2 m Euler Swiss Telescope, both installed at the ESO La Silla Observatory in Chile.RV data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/524/A25">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/524/A25</A> [less ▲]

Detailed reference viewed: 13 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-26b: A 1-Jupiter-mass planet around an early-G-type star
Smalley, B.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2010)

We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-magnitude early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A ... [more ▼]

We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-magnitude early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 +/- 0.03 M_Jup and radius of 1.32 +/- 0.08 R_Jup. The host star, WASP-26, has a mass of 1.12 +/- 0.03 M_sun and a radius of 1.34 +/- 0.06 R_sun and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 +/- 15 pc and an age of 6 +/- 2 Gy. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-19b: The Shortest Period Transiting Exoplanet Yet Discovered
Hebb, L.; Collier-Cameron, A.; Triaud, A H M J et al

in Astrophysical Journal (2010), 708

We report on the discovery of a new extremely short period transiting extrasolar planet, WASP-19b. The planet has mass M [SUB]pl[/SUB] = 1.15 ± 0.08 M[SUB]J[/SUB] , radius R [SUB]pl[/SUB] = 1.31 ± 0.06 ... [more ▼]

We report on the discovery of a new extremely short period transiting extrasolar planet, WASP-19b. The planet has mass M [SUB]pl[/SUB] = 1.15 ± 0.08 M[SUB]J[/SUB] , radius R [SUB]pl[/SUB] = 1.31 ± 0.06 R[SUB]J[/SUB] , and orbital period P = 0.7888399 ± 0.0000008 days. Through spectroscopic analysis, we determine the host star to be a slightly super-solar metallicity ([M/H] = 0.1 ± 0.1 dex) G-dwarf with T [SUB]eff[/SUB] = 5500 ± 100 K. In addition, we detect periodic, sinusoidal flux variations in the light curve which are used to derive a rotation period for the star of P [SUB]rot[/SUB] = 10.5 ± 0.2 days. The relatively short stellar rotation period suggests that either WASP-19 is somewhat young (~ 600 Myr old) or tidal interactions between the two bodies have caused the planet to spiral inward over its lifetime resulting in the spin-up of the star. Due to the detection of the rotation period, this system has the potential to place strong constraints on the stellar tidal quality factor, Q'[SUB] s [/SUB], if a more precise age is determined. [less ▲]

Detailed reference viewed: 33 (1 ULg)