References of "Werner, N"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOne-year outcomes in 1,010 unselected patients treated with the PROMUS Element everolimus-eluting stent: the multicentre PROMUS Element European Post-Approval Surveillance Study
Thomas, MR; Birkemeyer, R; Schwimmbeck, P et al

in EuroIntervention : Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology (2015), 10

Aims: The PROMUS™ Element™ European Post-Approval Surveillance Study (PE-Prove) is a prospective, open-label, multicentre observational study designed to assess outcomes following PROMUS Element ... [more ▼]

Aims: The PROMUS™ Element™ European Post-Approval Surveillance Study (PE-Prove) is a prospective, open-label, multicentre observational study designed to assess outcomes following PROMUS Element everolimus-eluting stent implantation in an unselected patient population. Methods and results: A total of 1,010 patients were enrolled at 40 clinical sites in Europe, including 24.9% with medically treated diabetes, 50.0% with Type B2/C lesions, 6.1% with chronic total occlusion, 17.8% with acute myocardial infarction (MI ≤24 hours pre-procedure), and 20.1% with unstable angina. The target lesion was the culprit for ST-segment elevation MI in 7.3% of patients. The one-year, per patient target vessel failure rate was 6.2% (60/975), 3.4% (33) being related to the PROMUS Element stent. Rates of cardiac death, MI, and Academic Research Consortium (ARC) definite/probable stent thrombosis were 1.7%, 3.5%, and 0.6%, respectively. The target vessel revascularisation rate was 3.2% (31/975), 2.1% (20) being related to the PROMUS Element stent. Conclusions: In a large and relatively complex group of “real-world” patients, coronary artery revascularisation with the PROMUS Element everolimus-eluting stent provides favourable results with low event rates consistent with those reported for other contemporary drug-eluting stents. [less ▲]

Detailed reference viewed: 24 (0 ULg)
Full Text
Peer Reviewed
See detailORIGIN: metal creation and evolution from the cosmic dawn
den Herder, Jan-Willem; Piro, Luigi; Ohashi, Takaya et al

in Experimental Astronomy (2012), 34

ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to ... [more ▼]

ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z = 10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts ( z ˜0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs. The ORIGIN mission includes a Transient Event Detector (coded mask with a sensitivity of 0.4 photon/cm[SUP]2[/SUP]/s in 10 s in the 5-150 keV band) to identify and localize 2000 GRBs over a five year mission, of which ˜65 GRBs have a redshift >7. The Cryogenic Imaging Spectrometer, with a spectral resolution of 2.5 eV, a field of view of 30 arcmin and large effective area below 1 keV has the sensitivity to study clusters up to a significant fraction of the virial radius and to map the denser parts of the WHIM (factor 30 higher than achievable with current instruments). The payload is complemented by a Burst InfraRed Telescope to enable onboard red-shift determination of GRBs (hence securing proper follow up of high-z bursts) and also probes the mildly ionized state of the gas. Fast repointing is achieved by a dedicated Controlled Momentum Gyro and a low background is achieved by the selected low Earth orbit. [less ▲]

Detailed reference viewed: 31 (6 ULg)