References of "Weingrill, J"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe PLATO 2.0 Mission
Rauer, H.; Catala, C.; Aerts, C. et al

in Experimental Astronomy (2014)

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental ... [more ▼]

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science. [less ▲]

Detailed reference viewed: 3 (2 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XXVI. CoRoT-24: a transiting multiplanet system
Alonso, R.; Moutou, C.; Endl, M. et al

in Astronomy and Astrophysics (2014), 567

We present the discovery of a candidate multiply transiting system, the first one found in the CoRoT mission. Two transit-like features with periods of 5.11 and 11.76 d are detected in the CoRoT light ... [more ▼]

We present the discovery of a candidate multiply transiting system, the first one found in the CoRoT mission. Two transit-like features with periods of 5.11 and 11.76 d are detected in the CoRoT light curve around a main sequence K1V star of r = 15.1. If the features are due to transiting planets around the same star, these would correspond to objects of 3.7 ± 0.4 and 5.0 ± 0.5 R[SUB]⊕[/SUB] , respectively. Several radial velocities serve to provide an upper limit of 5.7 M[SUB]⊕[/SUB] for the 5.11 d signal and to tentatively measure a mass of 28[SUP]+11[/SUP][SUB]-11[/SUB] M[SUB]⊕[/SUB] for the object transiting with a 11.76 d period. These measurements imply low density objects, with a significant gaseous envelope. The detailed analysis of the photometric and spectroscopic data serves to estimate the probability that the observations are caused by transiting Neptune-sized planets as much as over 26 times higher than a blend scenario involving only one transiting planet and as much as over 900 times higher than a scenario involving two blends and no planets. The radial velocities show a long-term modulation that might be attributed to a 1.5 M[SUB]Jup[/SUB] planet orbiting at 1.8 AU from the host, but more data are required to determine the precise orbital parameters of this companion. The CoRoT space mission, launched on 27 December 2006, has been developed and is operated by the CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Program), Germany, and Spain. Some of the observations were made with the HARPS spectrograph at ESO La Silla Observatory (184.C-0639) and with the HIRES spectrograph at the Keck Telescope (N035Hr, N143Hr 260 and N095Hr). Partly based on observations obtained at ESO Paranal Observatory, Chile (086.C-0235(A) and B).Tables 2-4 and Fig. 12 are available in electronic form at <A href="http://www.aanda.org/10.1051/0004-6361/201118662/olm">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 3 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XXIV. CoRoT-25b and CoRoT-26b: two low-density giant planets
Almenara, J. M.; Bouchy, F.; Gaulme, P. et al

in Astronomy and Astrophysics (2013), 555

We report the discovery of two transiting exoplanets, CoRoT-25b and CoRoT-26b, both of low density, one of which is in the Saturn mass-regime. For each star, ground-based complementary observations ... [more ▼]

We report the discovery of two transiting exoplanets, CoRoT-25b and CoRoT-26b, both of low density, one of which is in the Saturn mass-regime. For each star, ground-based complementary observations through optical photometry and radial velocity measurements secured the planetary nature of the transiting body and allowed us to fully characterize them. For CoRoT-25b we found a planetary mass of 0.27 ± 0.04 M[SUB]Jup[/SUB], a radius of 1.08[SUB]-0.10[/SUB][SUP]+0.3[/SUP] R[SUB]Jup[/SUB] and hence a mean density of 0.15[SUB]-0.06[/SUB][SUP]+0.15[/SUP] g cm[SUP]-3[/SUP]. The planet orbits an F9 main-sequence star in a 4.86-day period, that has a V magnitude of 15.0, solar metallicity, and an age of 4.5[SUB]-2.0[/SUB][SUP]+1.8[/SUP]-Gyr. CoRoT-26b orbits a slightly evolved G5 star of 9.06 ± 1.5-Gyr age in a 4.20-day period that hassolar metallicity and a V magnitude of 15.8. With a mass of 0.52 ± 0.05 M[SUB]Jup[/SUB], a radius of 1.26[SUB]-0.07[/SUB][SUP]+0.13[/SUP] R[SUB]Jup[/SUB], and a mean density of 0.28[SUB]-0.07[/SUB][SUP]+0.09[/SUP] g cm[SUP]-3[/SUP], it belongs to the low-mass hot-Jupiter population. Planetary evolution models allowed us to estimate a core mass of a few tens of Earth mass for the two planets with heavy-element mass fractions of 0.52[SUB]-0.15[/SUB][SUP]+0.08[/SUP] and 0.26[SUB]-0.08[/SUB][SUP]+0.05[/SUP], respectively, assuming that a small fraction of the incoming flux is dissipated at the center of the planet. In addition, these models indicate that CoRoT-26b is anomalously large compared with what standard models could account for, indicating that dissipation from stellar heating could cause this size. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Partly based on observations obtained at the European Southern Observatory at Paranal and La Silla, Chile in programs 083.C-0690(A), 184.C-0639. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission XXI. CoRoT-19b: A low density planet orbiting an old inactive F9V-star
Guenther, E. W.; Diaz, R. F.; Gazzano, J-C et al

in Astronomy and Astrophysics (2012), 537

Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. The CoRoT space mission allows us to ... [more ▼]

Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbit of the planet. We find that the host star of CoRoT-19b is an inactive F9V-type star close to the end of its main-sequence life. The host star has a mass M*=1.21+/-0.05 Msun and radius R*=1.65+/-0.04 Rsun. The planet has a mass of Mp=1.11+/-0.06 Mjup and radius of Rp=1.29+/-0.03 Rjup. The resulting bulk density is only rho=0.71+/-0.06 gcm-3, which is much lower than that for Jupiter. The exoplanet CoRoT-19b is an example of a giant planet of almost the same mass as Jupiter but a 30% larger radius. [less ▲]

Detailed reference viewed: 46 (12 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in the CoRoT LRa01 field
Carone, L.; Gandolfi, D.; Cabrera, J. et al

in Astronomy and Astrophysics (2012), 538

Context: CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose ... [more ▼]

Context: CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose lightcurves have transit-like features. An extensive analytical and observational follow-up effort is undertaken to classify these candidates. Aims: The list of planetary transit candidates from the CoRoT LRa01 star field in the Monoceros constellation towards the Galactic anti-center is presented. The CoRoT observations of LRa01 lasted from 24 October 2007 to 3 March 2008. Methods: 7470 chromatic and 3938 monochromatic lightcurves were acquired and analysed. Instrumental noise and stellar variability were treated with several filtering tools by different teams from the CoRoT community. Different transit search algorithms were applied to the lightcurves. Results: Fifty-one stars were classified as planetary transit candidates in LRa01. Thirty-seven (i.e., 73 % of all candidates) are "good" planetary candidates based on photometric analysis only. Thirty-two (i.e., 87 % of the "good" candidates) have been followed-up. At the time of this writing twenty-two cases have been solved and five planets have been discovered: three transiting hot-Jupiters (CoRoT-5b, CoRoT-12b, and CoRoT-21b), the first terrestrial transiting planet (CoRoT-7b), and another planet in the same system (CoRoT-7c, detected by radial velocity survey only). Evidences of another non-transiting planet in the CoRoT-7 system, namely CoRoT-7d, have been recently found. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XXIII. CoRoT-21b: a doomed large Jupiter around a faint subgiant star
Pätzold, M.; Endl, M.; Csizmadia, Sz et al

in Astronomy and Astrophysics (2012), 545

CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 (LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008 ... [more ▼]

CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 (LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008. Transits were discovered during the light curve processing. Radial velocity follow-up observations, however, were performed mainly by the 10-m Keck telescope in January 2010. The companion CoRoT-21b is a Jupiter-like planet of 2.26 ± 0.33 Jupiter masses and 1.30 ± 0.14 Jupiter radii in an circular orbit of semi-major axis 0.0417 ± 0.0011 AU and an orbital period of 2.72474 ± 0.00014 days. The planetary bulk density is (1.36 ± 0.48) × 10[SUP]3[/SUP] kg m[SUP]-3[/SUP], very similar to the bulk density of Jupiter, and follows an M[SUP]1/3[/SUP] - R relation like Jupiter. The F8IV star is a sub-giant star of 1.29 ± 0.09 solar masses and 1.95 ± 0.2 solar radii. The star and the planet exchange extremetidal forces that will lead to orbital decay and extreme spin-up of the stellar rotation within 800 Myr if the stellar dissipation is Q[SUB]∗[/SUB]/k[SUB]2∗[/SUB] ≤ 10[SUP]7[/SUP]. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. [less ▲]

Detailed reference viewed: 16 (0 ULg)
Full Text
Peer Reviewed
See detailXX. CoRoT-20b: A very high density, high eccentricity transiting giant planet
Deleuil, M.; Bonomo, A. S.; Ferraz-Mello, S. et al

in Astronomy and Astrophysics (2012), 538

We report the discovery by the CoRoT space mission of a new giant planet, CoRoT-20b. The planet has a mass of 4.24 +/- 0.23 MJ and a radius of 0.84 +/- 0.04 RJ. With a mean density of 8.87 +/- 1.10 g/cm^3 ... [more ▼]

We report the discovery by the CoRoT space mission of a new giant planet, CoRoT-20b. The planet has a mass of 4.24 +/- 0.23 MJ and a radius of 0.84 +/- 0.04 RJ. With a mean density of 8.87 +/- 1.10 g/cm^3, it is among the most compact planets known so far. Evolution models for the planet suggest a mass of heavy elements of the order of 800 ME if embedded in a central core, requiring a revision either of the planet formation models or of planet evolution and structure models. We note however that smaller amounts of heavy elements are expected from more realistic models in which they are mixed throughout the envelope. The planet orbits a G-type star with an orbital period of 9.24 days and an eccentricity of 0.56. The star's projected rotational velocity is vsini = 4.5 +/- 1.0 km/s, corresponding to a spin period of 11.5 +/- 3.1 days if its axis of rotation is perpendicular to the orbital plane. In the framework of Darwinian theories and neglecting stellar magnetic breaking, we calculate the tidal evolution of the system and show that CoRoT-20b is presently one of the very few Darwin-stable planets that is evolving towards a triple synchronous state with equality of the orbital, planetary and stellar spin periods. [less ▲]

Detailed reference viewed: 16 (5 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XXII. CoRoT-16b: a hot Jupiter with a hint of eccentricity around a faint solar-like star
Ollivier, M; Gillon, Michaël ULg; Santerne, A et al

in Astronomy and Astrophysics (2012), 541

<BR /> Aims: We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 ± 0.0002 days with slight eccentricity. A fit of the data with no a priori ... [more ▼]

<BR /> Aims: We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 ± 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 ± 0.1. We discuss this value and also derive the mass and radius of the planet. <BR /> Methods: We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. <BR /> Results: CoRoT-16b is a 0.535 -0.083/+0.085 M[SUB]J[/SUB], 1.17 -0.14/+0.16 R[SUB]J[/SUB] hot Jupiter with a density of 0.44 -0.14/+0.21 g cm[SUP]-3[/SUP]. Despite its short orbital distance (0.0618 ± 0.0015 AU) and the age of the parent star (6.73 ± 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon for this type of objects as tidal effects tend to circularise the orbit. This value is discussed taking into account the characteristics of the star and the observation accuracy. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.Observations made with the HARPS spectrograph at ESO La Silla Observatory (HARPS programs 083.C-0186 and 184.C-0639) and the HIRES spectrograph at the Keck Observatory (NASA-Keck programs N035Hr, N143Hr and N095Hr). [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission Resolving the nature of transit candidates for the LRa03 and SRa03 fields
Cavarroc, C.; Moutou, C.; Gandolfi, D. et al

in Astrophysics & Space Science (2012), 337

CoRoT is a space telescope which aims at studying internal structure of stars and detecting extrasolar planets. We present here a list of transits detected in the light curves of stars observed by CoRoT ... [more ▼]

CoRoT is a space telescope which aims at studying internal structure of stars and detecting extrasolar planets. We present here a list of transits detected in the light curves of stars observed by CoRoT in two fields in the anti-center direction: the LRa03 one observed during 148 days from 3 October 2009 to 1 March 2010 followed by the SRa03 one from the 5 March 2010 to the 29 March 2010 during 25 days. 5329 light curves for the LRa03 field and 4169 for the SRa03 field were analyzed by the detection team of CoRoT. Then some of the selected exoplanetary candidates have been followed up from the ground. In the LRa03 field, 19 exoplanet candidates have been found, 8 remain unsolved. No secured planet has been found yet. In the SRa03 field, there were 11 exoplanetary candidates among which 6 cases remain unsolved and 3 planets have been found: CoRoT-18b, CoRoT-19b, CoRoT-20b. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailExoplanet discoveries with the CoRoT space observatory
Lammer, H.; Dvorak, R.; Deleuil, M. et al

in Solar System Research (2010), 44

The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space ... [more ▼]

The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space Agency ESA. CoRoT observed since its launch in December 27, 2006 about 100 000 stars for the exoplanet channel, during 150 days uninterrupted high-precision photometry. Since the The CoRoT-team has several exoplanet candidates which are currently analyzed under its study, we report here the discoveries of nine exoplanets which were observed by CoRoT. Discovered exoplanets such as CoRoT-3b populate the brown dwarf desert and close the gap of measured physical properties between usual gas giants and very low mass stars. CoRoT discoveries extended the known range of planet masses down to about 4.8 Earth-masses (CoRoT-7b) and up to 21 Jupiter masses (CoRoT-3b), the radii to about 1.68 × 0.09 R [SUB]Earth[/SUB] (CoRoT-7b) and up to the most inflated hot Jupiter with 1.49 × 0.09 R [SUB]Earth[/SUB] found so far (CoRoT-1b), and the transiting exoplanet with the longest period of 95.274 days (CoRoT-9b). Giant exoplanets have been detected at low metallicity, rapidly rotating and active, spotted stars. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planethost-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that rocky planets with a density close to Earth exist outside the Solar System. Finally the detection of the secondary transit of CoRoT-1b at a sensitivity level of 10[SUP]-5[/SUP] and the very clear detection of the "super-Earth" CoRoT-7b at 3.5 × 10[SUP]-4[/SUP] relative flux are promising evidence that the space observatory is being able to detect even smaller exoplanets with the size of the Earth. [less ▲]

Detailed reference viewed: 24 (2 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XI. CoRoT-8b: a hot and dense sub-Saturn around a K1 dwarf
Bordé, P.; Bouchy, F.; Deleuil, M. et al

in Astronomy and Astrophysics (2010), 520

<BR /> Aims: We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. <BR /> Methods: We ... [more ▼]

<BR /> Aims: We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. <BR /> Methods: We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer. <BR /> Results: We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 ± 0.001 AU. It has a radius of 0.57 ± 0.02 R[SUB]J[/SUB], a mass of 0.22 ± 0.03 M[SUB]J[/SUB], and therefore a mean density of 1.6 ± 0.1 g cm[SUP]-3[/SUP]. <BR /> Conclusions: With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm[SUP]-3[/SUP]). We estimate its content in heavy elements to be 47-63 {M}_⊕, and the mass of its hydrogen-helium envelope to be 7-23 {M}_⊕. At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than 0.1% over an assumed integrated lifetime of 3 Ga. Observations made with SOPHIE spectrograph at Observatoire de Haute Provence, France (PNP.07B.MOUT), and the HARPS spectrograph at ESO La Silla Observatory (081.C-0388 and 083.C-0186). The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.Both data sets are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A66">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A66</A> [less ▲]

Detailed reference viewed: 25 (2 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XII. CoRoT-12b: a short-period low-density planet transiting a solar analog star
Gillon, Michaël ULg; Hatzes, A.; Csizmadia, Szilard et al

in Astronomy and Astrophysics (2010), 520

We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V = 15.5 solar analog star (M_* = 1.08 ± 0.08 M_ȯ, R_* = 1.1 ± 0.1 R_ȯ, T[SUB]eff[/SUB] = 5675 ... [more ▼]

We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V = 15.5 solar analog star (M_* = 1.08 ± 0.08 M_ȯ, R_* = 1.1 ± 0.1 R_ȯ, T[SUB]eff[/SUB] = 5675 ± 80 K). This new planet, CoRoT-12b, has a mass of 0.92 ± 0.07 M[SUB]Jup[/SUB] and a radius of 1.44 ± 0.13 R[SUB]Jup[/SUB]. Its low density can be explained by standard models for irradiated planets. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Program), Germany and Spain. [less ▲]

Detailed reference viewed: 34 (5 ULg)
Full Text
Peer Reviewed
See detailA transiting giant planet with a temperature between 250K and 430K
Deeg, H. J.; Moutou, C.; Erikson, A. et al

in Nature (2010), 464

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their ... [more ▼]

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets, including the first terrestrial exoplanet (CoRoT-7b), have been discovered using a space mission designed to find smaller and more distant planets than can be seen from the ground. Here we report transit observations of CoRoT-9b, which orbits with a period of 95.274days on a low eccentricity of 0.11+/-0.04 around a solar-like star. Its periastron distance of 0.36 astronomical units is by far the largest of all transiting planets, yielding a `temperate' photospheric temperature estimated to be between 250 and 430K. Unlike previously known transiting planets, the present size of CoRoT-9b should not have been affected by tidal heat dissipation processes. Indeed, the planet is found to be well described by standard evolution models with an inferred interior composition consistent with that of Jupiter and Saturn. [less ▲]

Detailed reference viewed: 35 (4 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission IX. CoRoT-6b: a transiting `hot Jupiter' planet in an 8.9d orbit around a low-metallicity star
Fridlund, M.; Hebrard, G.; Alonso, R. et al

in Astronomy and Astrophysics (2010), 512

The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations ... [more ▼]

The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a `hot Jupiter' planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high $^7$Li abundance. While thelightcurveindicatesamuchhigherlevelof activity than, e.g., the Sun, there is no sign of activity spectroscopically in e.g., the [Ca ] H&K lines. [less ▲]

Detailed reference viewed: 35 (2 ULg)