References of "Warneke, Thorsten"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailValidation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations
Mahieu, Emmanuel ULg; Duchatelet, Pierre ULg; Demoulin, Philippe ULg et al

in Atmospheric Chemistry and Physics (2008), 8

Hydrogen chloride (HCl) and hydrogen fluoride (HF) are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made ... [more ▼]

Hydrogen chloride (HCl) and hydrogen fluoride (HF) are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made halogenated source gases, in particular CFC-11 (CCl3F) and CFC-12 (CCl2F2), during the second half of the 20th century. It is important to continue monitoring the evolution of these source gases and reservoirs, in support of the Montreal Protocol and also indirectly of the Kyoto Protocol. The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) is a space-based instrument that has been performing regular solar occultation measurements of over 30 atmospheric gases since early 2004. In this validation paper, the HCl, HF, CFC-11 and CFC-12 version 2.2 profile data products retrieved from ACE-FTS measurements are evaluated. Volume mixing ratio profiles have been compared to observations made from space by MLS and HALOE, and from stratospheric balloons by SPIRALE, FIRS-2 and Mark-IV. Partial columns derived from the ACE-FTS data were also compared to column measurements from ground-based Fourier transform instruments operated at 12 sites. ACE-FTS data recorded from March 2004 to August 2007 have been used for the comparisons. These data are representative of a variety of atmospheric and chemical situations, with sounded air masses extending from the winter vortex to summer sub-tropical conditions. Typically, the ACE-FTS products are available in the 10-50 km altitude range for HCl and HF, and in the 7-20 and 7-25 km ranges for CFC-11 and -12, respectively. For both reservoirs, comparison results indicate an agreement generally better than 5-10% above 20 km altitude, when accounting for the known offset affecting HALOE measurements of HCl and HF. Larger positive differences are however found for comparisons with single profiles from FIRS-2 and SPIRALE. For CFCs, the few coincident measurements available suggest that the differences probably remain within +/-20%. [less ▲]

Detailed reference viewed: 80 (31 ULg)
Full Text
Peer Reviewed
See detailValidation of ACE-FTS N2O measurements
Strong, Kimberley; Wolff, Mareile A; Kerzenmacher, Tobias E et al

in Atmospheric Chemistry and Physics (2008), 8(16), 4759-4786

The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, was launched on 12 August 2003, carrying two instruments that measure vertical profiles of atmospheric constituents using the solar ... [more ▼]

The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, was launched on 12 August 2003, carrying two instruments that measure vertical profiles of atmospheric constituents using the solar occultation technique. One of these instruments, the ACE Fourier Transform Spectrometer (ACE-FTS), is measuring volume mixing ratio (VMR) profiles of nitrous oxide (N2O) from the upper troposphere to the lower mesosphere at a vertical resolution of about 3-4 km. In this study, the quality of the ACE-FTS version 2.2 N2O data is assessed through comparisons with coincident measurements made by other satellite, balloon-borne, aircraft, and ground-based instruments. These consist of vertical profile comparisons with the SMR, MLS, and MIPAS satellite instruments, multiple aircraft flights of ASUR, and single balloon flights of SPIRALE and FIRS-2, and partial column comparisons with a network of ground-based Fourier Transform InfraRed spectrometers (FTIRs). Between 6 and 30 km, the mean absolute differences for the satellite comparisons lie between -42 ppbv and +17 ppbv, with most within +/- 20 ppbv. This corresponds to relative deviations from the mean that are within +/- 15%, except for comparisons with MIPAS near 30 km, for which they are as large as 22.5%. Between 18 and 30 km, the mean absolute differences for the satellite comparisons are generally within +/- 10 ppbv. From 30 to 60 km, the mean absolute differences are within +/- 4 ppbv, and are mostly between -2 and +1 ppbv. Given the small N2O VMR in this region, the relative deviations from the mean are therefore large at these altitudes, with most suggesting a negative bias in the ACE-FTS data between 30 and 50 km. In the comparisons with the FTIRs, the mean relative differences between the ACE-FTS and FTIR partial columns (which cover a mean altitude range of 14 to 27 km) are within +/- 5.6% for eleven of the twelve contributing stations. This mean relative difference is negative at ten stations, suggesting a small negative bias in the ACE-FTS partial columns over the altitude regions compared. Excellent correlation (R=0.964) is observed between the ACE-FTS and FTIR partial columns, with a slope of 1.01 and an intercept of -0.20 on the line fitted to the data. [less ▲]

Detailed reference viewed: 58 (26 ULg)
Full Text
See detailMeasured and modeled trends of stratospheric Cly and Fy column amounts in the northern hemisphere
Ruhnke, Roland; Blumenstock, Thomas; Borsdorff, Tobias et al

Poster (2008, July)

The german HGF virtual institute PEP (Pole-Equator-Pole) has been established in 2004 in order to investigate the variability of atmospheric trace constituents along a north-south transection. Within PEP ... [more ▼]

The german HGF virtual institute PEP (Pole-Equator-Pole) has been established in 2004 in order to investigate the variability of atmospheric trace constituents along a north-south transection. Within PEP the HGF centres AWI and FZK as well as the german Universities of Bremen, Karlsruhe and Potsdam combine their knowledge and capabilities in ground-based measurements and global and regional modelling of atmospheric trace constituents and aerosols. Here we present results of long-term measurements of the stratospheric column of HCl, ClONO2, HF, and O3 obtained at the different PEP stations in the northern hemisphere and in addtion at Jungfraujoch. All stations are affiliated to the NDACC (Network for the Detection of Atmospheric Composition Change). The measured time series are compared with long-term model calculations performed with a state of the art 2-D model of the University of Bremen and the 3-D CTM KASIMA. Please note, that the lowest altitude for the determination of the total columns is about 7 km leading to a slight underestimation w.r.t. the measurements. [less ▲]

Detailed reference viewed: 41 (6 ULg)
Full Text
See detailMeasured and modelled trends of stratopsheric Cly and Fy column amounts in the northern hemisphere
Ruhnke, Roland; Blumenstock, Thomas; Duchatelet, Pierre ULg et al

Poster (2007, April)

Reactive inorganic chlorine plays a crucial role in the stratospheric ozone depletion. To stabilize and enable a recovering of the stratospheric ozone layer, the Montreal protocol and its amendments and ... [more ▼]

Reactive inorganic chlorine plays a crucial role in the stratospheric ozone depletion. To stabilize and enable a recovering of the stratospheric ozone layer, the Montreal protocol and its amendments and adjustments have been progressively implemented to reduce or even stop the production and emission of important chlorinated source gases (CFCs, HCFCs, CCl4, CH3CCl3, and Halons). As these source gases are photolysed in the stratosphere into inorganic chlorine and fluorine, respectively, the turn over of the inorganic chlorine (HCl and ClONO2) and slowing down of fluorine (HF and COF2) reservoirs act as a verification of the effectiveness of these protocols. Here we present results of long-term measurements of the stratospheric column of HCl, ClONO2, and HF obtained at different stations in the northern hemisphere (Ny Alesund, Kiruna, Zugspitze, Jungfraujoch, Izana, all affiliated to the NDACC, Network for the Detection of Atmospheric Composition Change) within the PEP (Pole- Equator-Pole) network. These time series are interpreted with model calculations performed with a state of the art 2-D model and the 3-D CTM KASIMA with respect to the determination of the slowing down or turn over, respectively. In addition, trend parameters calculated using different approaches (e.g. linear trend, bootstrap-method) will be presented and intercompared. [less ▲]

Detailed reference viewed: 30 (5 ULg)
Full Text
Peer Reviewed
See detailValidation of MIPAS ClONO2 measurements
Hopfner, Michael; von Clarmann, Thomas; Fischer, H. et al

in Atmospheric Chemistry and Physics (2007), 7

Altitude profiles of ClONO2 retrieved with the IMK (Institut fur Meteorologie und Klimaforschung) science-oriented data processor from MIPAS/Envisat (Michelson Interferometer for Passive Atmospheric ... [more ▼]

Altitude profiles of ClONO2 retrieved with the IMK (Institut fur Meteorologie und Klimaforschung) science-oriented data processor from MIPAS/Envisat (Michelson Interferometer for Passive Atmospheric Sounding on Envisat) mid-infrared limb emission measurements between July 2002 and March 2004 have been validated by comparison with balloon-borne (Mark IV, FIRS2, MIPAS-B), airborne (MIPAS-STR), ground-based (Spitsbergen, Thule, Kiruna, Harestua, Jungfraujoch, Izana, Wollongong, Lauder), and spaceborne (ACE-FTS) observations. With few exceptions we found very good agreement between these instruments and MIPAS with no evidence for any bias in most cases and altitude regions. For balloon-borne measurements typical absolute mean differences are below 0.05 ppbv over the whole altitude range from 10 to 39 km. In case of ACE-FTS observations mean differences are below 0.03 ppbv for observations below 26 km. Above this altitude the comparison with ACE-FTS is affected by the photochemically induced diurnal variation of ClONO2. Correction for this by use of a chemical transport model led to an overcompensation of the photochemical effect by up to 0.1 ppbv at altitudes of 30-35 km in case of MIPAS-ACE-FTS comparisons while for the balloon-borne observations no such inconsistency has been detected. The comparison of MIPAS derived total column amounts with ground-based observations revealed no significant bias in the MIPAS data. Mean differences between MIPAS and FTIR column abundances are 0.11 +/- 0.12 x 10(14) cm(-2) (1.0 +/- 1.1%) and -0.09 +/- 0.19 x 10(14) cm(-2) (-0.8 +/- 1.7%), depending on the coincidence criterion applied. chi(2) tests have been performed to assess the combined precision estimates of MIPAS and the related instruments. When no exact coincidences were available as in case of MIPAS-FTIR or MIPAS-ACE-FTS comparisons it has been necessary to take into consideration a coincidence error term to account for chi(2) deviations. From the resulting chi(2) profiles there is no evidence for a systematic over/underestimation of the MIPAS random error analysis. [less ▲]

Detailed reference viewed: 28 (12 ULg)
Full Text
Peer Reviewed
See detailComparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH4, CO2 and N2O
Dils, Bart; De Mazière, Martine; Muller, Jean-François et al

in Atmospheric Chemistry and Physics (2006), 6

Total column amounts of CO, CH4, CO2 and N2O retrieved from SCIAMACHY nadir observations in its near-infrared channels have been compared to data from a ground-based quasi-global network of Fourier ... [more ▼]

Total column amounts of CO, CH4, CO2 and N2O retrieved from SCIAMACHY nadir observations in its near-infrared channels have been compared to data from a ground-based quasi-global network of Fourier-transform infrared ( FTIR) spectrometers. The SCIAMACHY data considered here have been produced by three different retrieval algorithms, WFM-DOAS (version 0.5 for CO and CH4 and version 0.4 for CO2 and N2O), IMAP- DOAS ( version 1.1 and 0.9 (for CO)) and IMLM (version 6.3) and cover the January to December 2003 time period. Comparisons have been made for individual data, as well as for monthly averages. To maximize the number of reliable coincidences that satisfy the temporal and spatial collocation criteria, the SCIAMACHY data have been compared with a temporal 3rd order polynomial interpolation of the ground-based data. Particular attention has been given to the question whether SCIAMACHY observes correctly the seasonal and latitudinal variability of the target species. The present results indicate that the individual SCIAMACHY data obtained with the actual versions of the algorithms have been significantly improved, but that the quality requirements, for estimating emissions on regional scales, are not yet met. Nevertheless, possible directions for further algorithm upgrades have been identified which should result in more reliable data products in a near future. [less ▲]

Detailed reference viewed: 58 (27 ULg)