References of "Warneke, T"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRetrieval of ammonia from ground-based FTIR solar spectra
Dammers, Enrico; Vigouroux, C; Palm, M et al

in Atmospheric Chemistry & Physics Discussions (2015), 15

We present a retrieval method for ammonia (NH3) total columns from ground-based Fourier Transform InfraRed (FTIR) observations. Observations from Bremen (53.10° N, 8.85° E), Lauder (45.04° S, 169.68° E ... [more ▼]

We present a retrieval method for ammonia (NH3) total columns from ground-based Fourier Transform InfraRed (FTIR) observations. Observations from Bremen (53.10° N, 8.85° E), Lauder (45.04° S, 169.68° E), Reunion (20.9° S, 55.50° E) and Jungfraujoch (46.55° N, 7.98° E) were used to illustrate the capabilities of the method. NH3 mean total columns ranging three orders of magnitude were obtained with higher values at Bremen (mean of 13.47 × 1015 molecules cm-2) to the lower values at Jungfraujoch (mean of 0.18 × 1015 molecules cm-2). In conditions with high surface concentrations of ammonia, as in Bremen, it is possible to retrieve information on the vertical gradient as two layers can be discriminated. The retrieval there is most sensitive to ammonia in the planetary boundary layer, where the trace gas concentration is highest. For conditions with low concentrations only the total column can be retrieved. Combining the systematic and random errors we have a mean total error of 26 % for all spectra measured at Bremen (Number of spectra (N) = 554), 30 % for all spectra from Lauder (N =2412), 25 % for spectra from Reunion (N =1262) and 34 % for spectra measured at Jungfraujoch (N =2702). The error is dominated by the systematic uncertainties in the spectroscopy parameters. Station specific seasonal cycles were found to be consistent with known seasonal cycles of the dominant ammonia sources in the station surroundings. The developed retrieval methodology from FTIR-instruments provides a new way to obtain highly time-resolved measurements of ammonia burdens. FTIR-NH3 observations will be useful for understanding the dynamics of ammonia concentrations in the atmosphere and for satellite and model validation. It will also provide additional information to constrain the global ammonia budget. [less ▲]

Detailed reference viewed: 20 (2 ULg)
See detailRemote sensing of the atmospheric composition in the infrared spectral region within the Network for the Detection of Atmospheric Composition Change (NDACC) and the Total Carbon Column Observing Network (TCCON)
Notholt, J; Blumenstock, T; Deutscher, N et al

Conference (2015, May 12)

Remote sensing has been established as a powerful tool in atmospheric research. Throughout the last decades satellite and ground-based remote sensing instruments and methods have been developed to sample ... [more ▼]

Remote sensing has been established as a powerful tool in atmospheric research. Throughout the last decades satellite and ground-based remote sensing instruments and methods have been developed to sample the atmosphere from the microwave to the UV/Vis. The international ground based networks NDACC-IR and TCCON are based on solar absorption spectrometry in the infrared. Both networks consist of more than 30 observations sites around the globe, from the high Arctic through mid-latitudes and the tropics to the southern hemisphere and Antarctica. NDACC concentrates on stratospheric observations in relation to ozone chemistry, in many instances, information on the vertical distribution of the target species is determined. Measured trace gases include O3, HCl, HF, HNO3, ClONO2 and many others. In addition, the tropospheric composition is studied by measuring anthropogenic and biogenic species including HCN, OCS, H2O, CO, CH2O, C2H6, and C2H2. The aim of TCCON is to acquire accurate and precise column-averaged abundances of CO2, CH4, N2O, i.e. atmospheric trace gases which have a very small natural variability. TCCON measurements are linked to WMO calibration scales by comparisons with co-incident in situ profiles measured from aircraft or balloon. Results from both networks have been used in many studies in relation to stratospheric ozone chemistry, air-pollution, and with regard to the carbon-cycle. Long-term series are necessary for trend analysis, gaining insight into annual and longer term variability and placing into context shorter term process studies. Due to the similar observation geometry, the ground-based observations are optimally suitable for satellite and model validation and form an essential part of many satellite projects. They also play an important role in the validation of the Copernicus Atmospheric Monitoring Service. In our contribution we will give an overview on the current status of both networks, ongoing efforts to improve network coverage, precision and accuracy, and several examples of scientific highlights. [less ▲]

Detailed reference viewed: 42 (0 ULg)
Full Text
See detailRetrieval of ammonia from ground-based FTIR measurements and its use for validation of satellite observations by IASI
Dammers, E; Palm, M; Warneke, T et al

in Geophysical Research Abstracts (2015, April 13), 17

Atmospheric Ammonia (NH3) has a major impact on human health and ecosystem services and plays a major role in the formation of aerosols [Erisman et al.,2013; Paulot and Jacob 2014]. NH3 concentrations are ... [more ▼]

Atmospheric Ammonia (NH3) has a major impact on human health and ecosystem services and plays a major role in the formation of aerosols [Erisman et al.,2013; Paulot and Jacob 2014]. NH3 concentrations are highly variable in space and time with overall short lifetime due to deposition and aerosol formation. The global atmospheric budget of nitrogen and in turn NH3 is still uncertain which asks for more ground-based and satellite observations around the world. Recent papers have described the possibility to measure NH3 with satellite infrared sounders which open up the way for calculations of global and regional nitrogen budgets [Clarisse et al 2009,Van Damme et al 2014a]. Validation of the satellite observations is essential to determine the uncertainty in the signal and its potential use. So far available surface layer observations of atmospheric NH3 concentrations have been used for comparisons with total columns retrieved from satellite observations [Van Damme 2014b]. We developed a retrieval for NH3 column density concentrations (molecules NH3/cm2) by fitting a set of spectral windows to ground-based solar absorption Fourier transform infrared (FTIR) measurements with the spectral fitting program SFIT4 [Hase et al., 2004]. The retrieval is then applied to FTIR measurements from a set of spectrometer sites from the Network for detection of Atmospheric Composition Change (NDACC) to retrieve NH3 columns for the sites located in Bremen, Germany; Lauder, New Zealand; Jungfraujoch, Switzerland; and the island of Reunion, France. Using eight years (2005-2013) of retrieved NH3 columns clear seasonal cycles are observed for each of the stations. Maximum concentrations can be related to NH3 emission sources, specific for the regions. A comparison between the retrieved NH3 columns and observations from the recent IASI- NH3 product [Van Damme et al, 2014a] using strict spatial and temporal criteria for the selection of observations showed a good correlation (R=0.82; slope=0.63). The IASI- NH3 columns for the Bremen and Lauder area show similar temporal cycles when compared to the FTIR observations. [less ▲]

Detailed reference viewed: 24 (1 ULg)
Full Text
Peer Reviewed
See detailUsing XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets
Barthlott, S; Schneider, M; Hase, F et al

in Atmospheric Measurement Techniques (2015), 8

Within the NDACC (Network for the Detection of Atmospheric Composition Change), more than 20 FTIR (Fourier-transform infrared) spectrometers, spread worldwide, provide long-term data records of many ... [more ▼]

Within the NDACC (Network for the Detection of Atmospheric Composition Change), more than 20 FTIR (Fourier-transform infrared) spectrometers, spread worldwide, provide long-term data records of many atmospheric trace gases. We present a method that uses measured and modelled XCO2 for assessing the consistency of these NDACC data records. Our XCO2 retrieval setup is kept simple so that it can easily be adopted for any NDACC/FTIR-like measurement made since the late 1950s. By a comparison to coincident TCCON (Total Carbon Column Observing Network) measurements, we empirically demonstrate the useful quality of this suggested NDACC XCO2 product (empirically obtained scatter between TCCON and NDACC is about 4‰ for daily mean as well as monthly mean comparisons, and the bias is 25 ‰). Our XCO2 model is a simple regression model fitted to CarbonTracker results and the Mauna Loa CO2 in situ records. A comparison to TCCON data suggests an uncertainty of the model for monthly mean data of below 3 ‰. We apply the method to the NDACC/FTIR spectra that are used within the project MUSICA (multi-platform remote sensing of isotopologues for investigating the cycle of atmospheric water) and demonstrate that there is a good consistency for these globally representative set of spectra measured since 1996: the scatter between the modelled and measured XCO2 on a yearly time scale is only 3 ‰. [less ▲]

Detailed reference viewed: 54 (6 ULg)
Full Text
Peer Reviewed
See detailGround-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
Schneider, M.; Barthlott, S.; Hase, F. et al

in Atmospheric Measurement Techniques (2012), 5(2012), 3007-3027

Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ... [more ▼]

Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle. [less ▲]

Detailed reference viewed: 65 (7 ULg)
Full Text
Peer Reviewed
See detailObserved and simulated time evolution of HCl, ClONO2, and HF total column abundances
Kohlhepp, R; Ruhnke, R; Chipperfield, M P et al

in Atmospheric Chemistry and Physics (2012), 12(7), 3527--3556

Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra ... [more ▼]

Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra recorded at 17 sites belonging to the Network for the Detection of Atmospheric Composition Change (NDACC) and located between 80.05°N and 77.82°S. By providing such a near-global overview on ground-based measurements of the two major stratospheric chlorine reservoir species, HCl and ClONO2, the present study is able to confirm the decrease of the atmospheric inorganic chlorine abundance during the last few years. This decrease is expected following the 1987 Montreal Protocol and its amendments and adjustments, where restrictions and a subsequent phase-out of the prominent anthropogenic chlorine source gases (solvents, chlorofluorocarbons) were agreed upon to enable a stabilisation and recovery of the stratospheric ozone layer. The atmospheric fluorine content is expected to be influenced by the Montreal Protocol, too, because most of the banned anthropogenic gases also represent important fluorine sources. But many of the substitutes to the banned gases also contain fluorine so that the HF total column abundance is expected to have continued to increase during the last few years. The measurements are compared with calculations from five different models: the two-dimensional Bremen model, the two chemistry-transport models KASIMA and SLIMCAT, and the two chemistry-climate models EMAC and SOCOL. Thereby, the ability of the models to reproduce the absolute total column amounts, the seasonal cycles, and the temporal evolution found in the FTIR measurements is investigated and inter-compared. This is especially interesting because the models have different architectures. The overall agreement between the measurements and models for the total column abundances and the seasonal cycles is good. Linear trends of HCl, ClONO2, and HF are calculated from both measurement and model time series data, with a focus on the time range 2000–2009. This period is chosen because from most of the measurement sites taking part in this study, data are available during these years. The precision of the trends is estimated with the bootstrap resampling method. The sensitivity of the trend results with respect to the fitting function, the time of year chosen and time series length is investigated, as well as a bias due to the irregular sampling of the measurements. The measurements and model results investigated here agree qualitatively on a decrease of the chlorine species by around 1%yr-1. The models simulate an increase of HF of around 1%yr-1. This also agrees well with most of the measurements, but some of the FTIR series in the Northern Hemisphere show a stabilisation or even a decrease in the last few years. In general, for all three gases, the measured trends vary more strongly with latitude and hemisphere than the modelled trends. Relative to the FTIR measurements, the models tend to underestimate the decreasing chlorine trends and to overestimate the fluorine increase in the Northern Hemisphere. At most sites, the models simulate a stronger decrease of ClONO2 than of HCl. In the FTIR measurements, this difference between the trends of HCl and ClONO2 depends strongly on latitude, especially in the Northern Hemisphere. [less ▲]

Detailed reference viewed: 95 (14 ULg)
Full Text
Peer Reviewed
See detailProcess-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations
Risi, C; Noone, D; Worden, J et al

in Journal of Geophysical Research (2012), 117(D5), 05303

N2 - The goal of this study is to determine how H2O and HDO measurements in water vapor can be used to detect and diagnose biases in the representation of processes controlling tropospheric humidity in ... [more ▼]

N2 - The goal of this study is to determine how H2O and HDO measurements in water vapor can be used to detect and diagnose biases in the representation of processes controlling tropospheric humidity in atmospheric general circulation models (GCMs). We analyze a large number of isotopic data sets (four satellite, sixteen ground-based remote-sensing, five surface in situ and three aircraft data sets) that are sensitive to different altitudes throughout the free troposphere. Despite significant differences between data sets, we identify some observed HDO/H2O characteristics that are robust across data sets and that can be used to evaluate models. We evaluate the isotopic GCM LMDZ, accounting for the effects of spatiotemporal sampling and instrument sensitivity. We find that LMDZ reproduces the spatial patterns in the lower and mid troposphere remarkably well. However, it underestimates the amplitude of seasonal variations in isotopic composition at all levels in the subtropics and in midlatitudes, and this bias is consistent across all data sets. LMDZ also underestimates the observed meridional isotopic gradient and the contrast between dry and convective tropical regions compared to satellite data sets. Comparison with six other isotope-enabled GCMs from the SWING2 project shows that biases exhibited by LMDZ are common to all models. The SWING2 GCMs show a very large spread in isotopic behavior that is not obviously related to that of humidity, suggesting water vapor isotopic measurements could be used to expose model shortcomings. In a companion paper, the isotopic differences between models are interpreted in terms of biases in the representation of processes controlling humidity. [less ▲]

Detailed reference viewed: 75 (5 ULg)
Full Text
See detailCO2 total column retrieval by mid-IR FT Spectroscopy
Buschmann, M; Dohe, S; Mahieu, Emmanuel ULg et al

in Geophysical Research Abstracts (2012), 14

Over the last decade ground-based remote sensing measurements of CO2 have been established as an important component in the global observing system for greenhouse gases. Since 2004 the Total Carbon Column ... [more ▼]

Over the last decade ground-based remote sensing measurements of CO2 have been established as an important component in the global observing system for greenhouse gases. Since 2004 the Total Carbon Column Observing Network (TCCON) sites have provided CO2 retrievals in the near-IR region. CO2 can also be retrieved in the mid-IR spectral region and it would be of great benefit to use these spectra to produce CO2-data of sufficient precision. With this, 20 years of additional observations obtained in the mid-IR at a suite of FT-IR sites of the Network Detection of Atmospheric Composition Change (NDACC) will be accessible. We investigated a series of different CO2 microwindows in the mid-IR spectral region and present results from the most promising candidates for a showcase FT-IR site (Ny Alesund). Limitations of the approach are outlined and the feasibility of a future Mid-IR CO2-product of sufficient precision is discussed. [less ▲]

Detailed reference viewed: 40 (5 ULg)
Full Text
Peer Reviewed
See detailCarbon monoxide (CO) and ethane (C2H6) trends from ground-based solar FTIR measurements at six European stations, comparison and sensitivity analysis with the EMEP model
Angelbratt, J.; Mellqvist, J.; Simpson, D. et al

in Atmospheric Chemistry and Physics (2011), 11(17), 9253--9269

Trends in the CO and C2H6 partial columns ~0–15 km) have been estimated from four European ground-based solar FTIR (Fourier Transform InfraRed) stations for the 1996–2006 time period. The CO trends from ... [more ▼]

Trends in the CO and C2H6 partial columns ~0–15 km) have been estimated from four European ground-based solar FTIR (Fourier Transform InfraRed) stations for the 1996–2006 time period. The CO trends from the four stations Jungfraujoch, Zugspitze, Harestua and Kiruna have been estimated to −0.45 ± 0.16% yr−1, −1.00 ± 0.24% yr−1, −0.62 ± 0.19 % yr−1 and −0.61 ± 0.16% yr−1, respectively. The corresponding trends for C2H6 are −1.51 ± 0.23% yr−1, −2.11 ± 0.30% yr−1, −1.09 ± 0.25% yr−1 and −1.14 ± 0.18% yr−1. All trends are presented with their 2-σ confidence intervals. To find possible reasons for the CO trends, the global-scale EMEP MSC-W chemical transport model has been used in a series of sensitivity scenarios. It is shown that the trends are consistent with the combination of a 20% decrease in the anthropogenic CO emissions seen in Europe and North America during the 1996–2006 period and a 20% increase in the anthropogenic CO emissions in East Asia, during the same time period. The possible impacts of CH4 and biogenic volatile organic compounds (BVOCs) are also considered. The European and global-scale EMEP models have been evaluated against the measured CO and C2H6 partial columns from Jungfraujoch, Zugspitze, Bremen, Harestua, Kiruna and Ny-Ålesund. The European model reproduces, on average the measurements at the different sites fairly well and within 10–22% deviation for CO and 14–31% deviation for C2H6. Their seasonal amplitude is captured within 6–35% and 9–124% for CO and C2H6, respectively. However, 61–98% of the CO and C2H6 partial columns in the European model are shown to arise from the boundary conditions, making the global-scale model a more suitable alternative when modeling these two species. In the evaluation of the global model the average partial columns for 2006 are shown to be within 1–9% and 37–50% of the measurements for CO and C2H6, respectively. The global model sensitivity for assumptions made in this paper is also analyzed. [less ▲]

Detailed reference viewed: 42 (4 ULg)
Full Text
See detailComparisons between SCIAMACHY Scientific Products and Ground-Based FTIR Data for Total Columns of CO, CH4 and N2O
De Mazière, M.; Barret, B.; Blumenstock, T. et al

Scientific conference (2004, May)

Total column amounts of CO, CH4 and N2O retrieved from SCIAMACHY nadir observations in its near-infrared channels have been compared to data from a ground-based network of Fourier-transform infrared (FTIR ... [more ▼]

Total column amounts of CO, CH4 and N2O retrieved from SCIAMACHY nadir observations in its near-infrared channels have been compared to data from a ground-based network of Fourier-transform infrared (FTIR) spectrometers as well as to data obtained with an FTIR instrument during a ship cruise in January-February 2003, along the African West Coast. The SCIAMACHY data considered here have been produced by two different scientific retrieval algorithms, wfm-doas (version 4.0) and IMLM (version 5.1), and cover different time periods, making the number of reliable coincidences that satisfy the temporal and spatial collocation criteria rather limited and different for both. Also the quality of the SCIAMACHY Level 1 data, and thus of the Level 2 data for the different time periods is very different. Still the comparisons demonstrate the capability of SCIAMACHY, using one of both algorithms, to deliver geophysically valuable products for the target species under consideration, on a global scale. [less ▲]

Detailed reference viewed: 32 (0 ULg)