References of "Waite, H"
     in
Bookmark and Share    
See detailThe Solar Wind Upstream of Saturn: Cassini Plasma measurements and Saturn's Aurora
Crary, F. J.; Young, D. T.; Barraclough, B. et al

Conference (2004, May 17)

For a full solar rotation in January and early February, 2004, the Cassini spacecraft and Hubble and Chandra Space Telescopes were used to make simultaneous observations of the solar wind and Saturn's ... [more ▼]

For a full solar rotation in January and early February, 2004, the Cassini spacecraft and Hubble and Chandra Space Telescopes were used to make simultaneous observations of the solar wind and Saturn's aurora. We report here on initial results from data taken with the Cassini Plasma Spectrometer's electron and high-resolution ion sensors in the solar wind upstream of Saturn. These measurements, combined with those of other particles and fields instruments on Cassini show two shock and corotating interaction regions, which reached Saturn approximately twelve hours later. An auroral response to each of these events was observed by the Hubble Space Telescope. [less ▲]

Detailed reference viewed: 63 (4 ULg)
See detailHST STIS Observations of Saturn's Auroral Variations Concurrent with the Cassini Solar Wind Campaign in Jan. 2004
Clarke, J. T.; Gérard, Jean-Claude ULg; Grodent, Denis ULg et al

Conference (2004, May 17)

Saturn's magnetosphere is often referred to as "intermediate between the cases of the Earth and Jupiter". Due to very limited measurements of Saturn's magnetosphere and auroral activity, however, it has ... [more ▼]

Saturn's magnetosphere is often referred to as "intermediate between the cases of the Earth and Jupiter". Due to very limited measurements of Saturn's magnetosphere and auroral activity, however, it has never been clear in detail what this statement means. A recent campaign of HST STIS UV imaging of Saturn's aurora has been carried out over 8-30 Jan. 2004 concurrent with measurements of the approaching solar wind by Cassini. This imaging set is much more comprehensive than any earlier observations of Saturn's aurora, obtained at a time when Saturn's southern auroral oval is completely visible due to the large apparent tilt of Saturn. The data provide the opportunity to determine the mean distribution of the auroral emissions, the degree of corotation of any bright regions, any variations with local time of the emissions, the latitudinal motions of the main oval with time and location, and other parameters. In addition, each of these can be compared with the approaching solar wind conditions and Saturn's kilometric radiation (SKR) intensity from Cassini measurements. Quick looks at the data from HST and Cassini demonstrate that the measurements have been made successfully, and the coverage includes dramatic variations in Saturn's auroral activity as well as at least two solar wind shocks passing Cassini. This presentation will concentrate on the measured properties of Saturn's aurora in the context of comparisons with the magnetospheres of the Earth and Jupiter. [less ▲]

Detailed reference viewed: 22 (5 ULg)
See detailAuroral and Non-auroral X-ray Emissions from Jupiter: A Comparative View
Bhardwaj, A.; Elsner, R.; Gladstone, R. et al

Poster (2004)

Jovian X-rays can be broadly classified into two categories: (1) "auroral" emission, which is confined to high-latitudes ( ˜>60° ) at both polar regions, and (2) "dayglow" emission, which originates from ... [more ▼]

Jovian X-rays can be broadly classified into two categories: (1) "auroral" emission, which is confined to high-latitudes ( ˜>60° ) at both polar regions, and (2) "dayglow" emission, which originates from the sunlit low-latitude ( ˜<50° ) regions of the disk (hereafter called "disk" emissions). Recent X-ray observations of Jupiter by Chandra and XMM-Newton have shown that these two types of X-ray emission from Jupiter have different morphological, temporal, and spectral characteristics. In particular: 1) contrary to the auroral X-rays, which are concentrated in a spot in the north and in a band that runs half-way across the planet in the south, the low-latitude X-ray disk is almost uniform; 2) unlike the ˜40±20-min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations; 3) the disk emission is harder and extends to higher energies than the auroral spectrum; and 4) the disk X-ray emission show time variability similar to that seen in solar X-rays. These differences and features imply that the processes producing X-rays are different at these two latitude regions on Jupiter. We will present the details of these and other features that suggest the differences between these two classes of X-ray emissions from Jupiter, and discuss the current scenario of the production mechanism of them. [less ▲]

Detailed reference viewed: 9 (3 ULg)
Full Text
Peer Reviewed
See detailDYNAMO: a Mars upper atmosphere package for investigating solar wind interaction and escape processes, and mapping Martian fields
Chassefière, E.; Nagy, A.; Mandea, M. et al

in Advances in Space Research (2004), 33

DYNAMO is a small multi-instrument payload aimed at characterizing current atmospheric escape, which is still poorly constrained, and improving gravity and magnetic field representations, in order to ... [more ▼]

DYNAMO is a small multi-instrument payload aimed at characterizing current atmospheric escape, which is still poorly constrained, and improving gravity and magnetic field representations, in order to better understand the magnetic, geologic and thermal history of Mars. The internal structure and evolution of Mars is thought to have influenced climate evolution. The collapse of the primitive magnetosphere early in Mars history could have enhanced atmospheric escape and favored transition to the present arid climate. These objectives are achieved by using a low periapsis orbit. DYNAMO has been proposed in response to the AO released in February 2002 for instruments to be flown as a complementary payload onboard the CNES Orbiter to Mars (MO-07), foreseen to be launched in 2007 in the framework of the French PREMIER Mars exploration program. MO-07 orbital phase 2b (with an elliptical orbit of periapsis 170 km), and in a lesser extent 2a, offers an unprecedented opportunity to investigate by in situ probing the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, and therefore the present atmospheric escape rate. Ultraviolet remote sensing is an essential complement to characterize high, tenuous, layers of the atmosphere. One Martian year of operation, with about 5,000 low passes, should allow DYNAMO to map in great detail the residual magnetic field, together with the gravity field. Additional data on the internal structure will be obtained by mapping the electric conductivity, sinergistically with the NETLANDER magnetic data. Three options have been recommended by the International Science and Technical Review Board (ISTRB), who met on July 1st and 2nd, 2002. One of them is centered on DYNAMO. The final choice, which should be made before the end of 2002, will depend on available funding resources at CNES. [less ▲]

Detailed reference viewed: 41 (2 ULg)
See detailHST Observations of Aurora from the Magnetic Footprints of Io, Ganymede, and Europa during the Millennium Campaign
Clarke, J. T.; Grodent, Denis ULg; Connerney, J. et al

in Bulletin of the American Astronomical Society (2001, November 01)

UV images of Jupiter's aurora obtained with the HST STIS instrument reveal much detail in the distribution of emissions from Io's magnetic footprint on Jupiter, including extended trails of emission in ... [more ▼]

UV images of Jupiter's aurora obtained with the HST STIS instrument reveal much detail in the distribution of emissions from Io's magnetic footprint on Jupiter, including extended trails of emission in the downstream direction. Emissions are also seen from the magnetic footprints of Ganymede and Europa, relatively much fainter and point-like in spatial extent. Knowledge of the statistical properties of these emissions, in terms of their locations and brightnesses, was greatly advanced in a comprehensive series of images obtained during the Millennium campaign in Dec. 2000 - Jan. 2001. These images provide sufficient spatial coverage to give a good indication of the auroral oval locations mapping to Io and Ganymede, and a few points mapping to Europa. The observed variations in footprint properties provide indications of the nature of the electrodynamic interactions of the satellites with Jupiter's magnetic field. These and other indicators also show the direction that magnetic field models should take to better describe Jupiter's internal magnetic field. Contributing evidence comes from the locus of footprint latitudes, and their deviations from the VIP4 model. The latitudinal distance between the Io and Ganymede footprint loci indicates variations in the local field strength, with larger separations corresponding to a weaker field. These separations, and the distance from and distortion of the main oval, indicate an anomalously weak field region in the north near 90[SUP]o[/SUP] longitude. This work has been supported by NASA in STScI grants GO-08171-97A and GO-08657-01A to the University of Michigan. [less ▲]

Detailed reference viewed: 21 (2 ULg)
See detailA dawn auroral storm on Jupiter: measurement of complex hydocarbons
Clarke, J. T.; Gladstone, R.; Pryor, W. et al

Conference (2000, December)

Detailed reference viewed: 4 (0 ULg)
See detailHST/STIS Observations of a Dawn Auroral Storm on Jupiter
Clarke, J. T.; Gladstone, R.; Pryor, W. et al

in Bulletin of the American Astronomical Society (2000, October 01)

The HST/STIS recorded a detailed time series of images and spectra of the UV emissions from a dawn auroral storm on Jupiter on 21 Sept. 1999. The images show complex and evolving fine structure in the ... [more ▼]

The HST/STIS recorded a detailed time series of images and spectra of the UV emissions from a dawn auroral storm on Jupiter on 21 Sept. 1999. The images show complex and evolving fine structure in the storm, while the emission center remained along the main oval and near dawn in magnetic local time. We serendipitously recorded low resolution UV spectra of the north-south spatial distribution of the auroral emissions. These spectra show far stronger hydrocarbon absorptions than observed in any previous auroral spectra. This indicates an unusually deep penetration of the incident primary particles with respect to the neutral atmosphere, and correspondingly high energy of the primary particles. We can thus use these spectra to identify many complex hydrocarbons in Jupiter's auroral atmosphere which are not normally measured in auroral spectra. These results will be presented along with model fits to the spectra derived both from fitting the observed hydrocarbon absorption features and from comparison with a photochemical model for the expected composition of the auroral atmosphere. This research has been supported by grant GO-8171.01-97A from the Space Telescope Science Institute to the University of Michigan. [less ▲]

Detailed reference viewed: 7 (1 ULg)