References of "Volskiy, V"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNanostripe length dependence of plasmon-induced material deformations
Valev, V.K.; Libaers, W.; Zywietz, U. et al

in Optics Letters (2013), 38

Following the impact of a single femtosecond light pulse on nickel nanostripes, material deformations—or “nanobumps”—are created. We have studied the dependence of these nanobumps on the length of ... [more ▼]

Following the impact of a single femtosecond light pulse on nickel nanostripes, material deformations—or “nanobumps”—are created. We have studied the dependence of these nanobumps on the length of nanostripes and verified the link with plasmons. More specifically, local electric currents can melt the nanostructures in the hotspots, where hydrodynamic processes give rise to nanobumps. This process is further confirmed by independently simulating local magnetic fields, since these are produced by the same local electric currents. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailPlasmon-Enhanced Sub-Wavelength Laser Ablation: Plasmonic Nanojets
Valev, V.K.; Denkova, D.; Zheng, X. et al

in Advanced Materials (2012), 24

Plasmonic hotspots are regions on the surface of metal nanostructures where light causes very strong oscillation of the electrons. Because electron oscillations constitute an electric current and because ... [more ▼]

Plasmonic hotspots are regions on the surface of metal nanostructures where light causes very strong oscillation of the electrons. Because electron oscillations constitute an electric current and because electric currents heat up the material the same way an electric stove heats up in the kitchen, the plasmonic hotspots are extremely hot. So hot that they can melt the gold in a spot much smaller than the wavelength of light. We were successfully able to demonstrate that this tiny little pool of molten gold can give rise to the smallest nanojets ever observed. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailDistributing the Optical Near-Field for Efficient Field-Enhancements in Nanostructures
Valev, V; De Clercq, B; Biris, C et al

in Advanced Materials (2012), 24

Circularly polarized light imparts a sense of rotation on the electron density in ring-shaped gold nanostructures. As a consequence, the near-field enhancement becomes homogeneous on the surface of the ... [more ▼]

Circularly polarized light imparts a sense of rotation on the electron density in ring-shaped gold nanostructures. As a consequence, the near-field enhancement becomes homogeneous on the surface of the nanostructures, thereby increasing the opportunity for interaction with molecules. This type of nanostructured samples can find a broad range of applications in chemical processes where the interaction between molecules and local field enhancements play an important role. [less ▲]

Detailed reference viewed: 15 (2 ULg)
Full Text
Peer Reviewed
See detailRobustness of the scanning second harmonic generation microscopy technique for characterization of hotspot patterns in plasmonic nanomaterials
Valev, VK; De Clercq, B; Zheng, X et al

in Proceedings of SPIE (2012), 8424

Scanning second harmonic generation (SHG) microscopy is becoming an important tool for characterizing nanopatterned metal surfaces and mapping plasmonic local field enhancements. Here we study G-shaped ... [more ▼]

Scanning second harmonic generation (SHG) microscopy is becoming an important tool for characterizing nanopatterned metal surfaces and mapping plasmonic local field enhancements. Here we study G-shaped and mirror-G-shaped gold nanostructures and test the robustness of the experimental results versus the direction of scanning, the numerical aperture of the objective, the magnification, and the size of the laser spot on the sample. We find that none of these parameters has a significant influence on the experimental results. [less ▲]

Detailed reference viewed: 25 (0 ULg)
Full Text
Peer Reviewed
See detailThe role of chiral local field enhancements below the resolution limit of Second Harmonic Generation microscopy
Valev, V.; Clercq, B.; Zheng, X. et al

in Optics Express (2011), 20(1), 256

While it has been demonstrated that, above its resolution limit, Second Harmonic Generation (SHG) microscopy can map chiral local field enhancements, below that limit, structural defects were found to ... [more ▼]

While it has been demonstrated that, above its resolution limit, Second Harmonic Generation (SHG) microscopy can map chiral local field enhancements, below that limit, structural defects were found to play a major role. Here we show that, even below the resolution limit, the contributions from chiral local field enhancements to the SHG signal can dominate over those by structural defects. We report highly homogeneous SHG micrographs of star-shaped gold nanostructures, where the SHG circular dichroism effect is clearly visible from virtually every single nanostructure. Most likely, size and geometry determine the dominant contributions to the SHG signal in nanostructured systems. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailHotspot Decorations Map Plasmonic Patterns with the Resolution of Scanning Probe Techniques
Valev, V. K.; Silhanek, Alejandro ULg; Jeyaram, Y. et al

in Physical Review Letters (2011), 106(22),

In high definition mapping of the plasmonic patterns on the surfaces of nanostructures, the diffraction limit of light remains an important obstacle. Here we demonstrate that this diffraction limit can be ... [more ▼]

In high definition mapping of the plasmonic patterns on the surfaces of nanostructures, the diffraction limit of light remains an important obstacle. Here we demonstrate that this diffraction limit can be completely circumvented. We show that upon illuminating nanostructures made of nickel and palladium, the resulting surface-plasmon pattern is imprinted on the structures themselves; the hotspots (regions of local field enhancement) are decorated with overgrowths, allowing for their subsequent imaging with scanning-probe techniques. The resulting resolution of plasmon pattern imaging is correspondingly improved. [less ▲]

Detailed reference viewed: 20 (1 ULg)