References of "Violot, S"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailStructure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering
Violot, S.; Aghajari, N.; Czjzek, M. et al

in Journal of Molecular Biology (2005), 348(5), 1211-1224

Pseudoalteromonas haloplanktis is a psychrophilic Gram-negative bacterium isolated in Antarctica, that lives on organic remains of algae. This bacterium converts the cellulose, highly constitutive of ... [more ▼]

Pseudoalteromonas haloplanktis is a psychrophilic Gram-negative bacterium isolated in Antarctica, that lives on organic remains of algae. This bacterium converts the cellulose, highly constitutive of algae, into an immediate nutritive form by biodegrading this biopolymer. To understand the mechanisms of cold adaptation of its enzymatic components, we studied the structural properties of an endoglucanase, Cel5G, by complementary methods, X-ray crystallography and small angle X-ray scattering. Using X-ray crystallography, we determined the structure of the catalytic core module of this family 5 endoglucanase, at 1.4 angstrom resolution in its native form and at 1.6 angstrom in the cellobiose-bound form. The catalytic module of Cel5G presents the (beta/alpha)(8)-barrel structure typical of clan GH-A of glycoside hydrolase families. The structural comparison of the catalytic core of Cel5G with the mesophilic catalytic core of Cel5A from Erwinia chrysanthemi revealed modifications at the atomic level leading to higher flexibility and thermolability, which might account for the higher activity of Cel5G at low temperatures. Using small angle X-ray scattering we further explored the structure at the entire enzyme level. We analyzed the dimensions, shape, and conformation of Cel5G full length in solution and especially of the linker between the catalytic module and the cellulose-binding module. The results showed that the linker is unstructured, and unusually long and flexible, a peculiarity that distinguishes it from its mesophilic counterpart. Loops formed at the base by disulfide bridges presumably add constraints to stabilize the most extended conformations. These results suggest that the linker plays a major role in cold adaptation of this psychrophilic enzyme, allowing steric optimization of substrate accessibility. (c) 2005 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailExpression, purification, crystallization and preliminary X-ray crystallographic studies of a psychrophilic cellulase from Pseudoalteromonas haloplanktis
Violot, S.; Haser, R.; Sonan, G. et al

in Acta Crystallographica Section D-Biological Crystallography (2003), 59(Part 7), 1256-1258

The Antarctic psychrophile Pseudoalteromonas haloplanktis produces a cold-active cellulase. To date, a three-dimensional structure of a psychrophilic cellulase has been lacking. Crystallographic studies ... [more ▼]

The Antarctic psychrophile Pseudoalteromonas haloplanktis produces a cold-active cellulase. To date, a three-dimensional structure of a psychrophilic cellulase has been lacking. Crystallographic studies of this cold-adapted enzyme have therefore been initiated in order to contribute to the understanding of the molecular basis of the cold adaptation and the high catalytic efficiency of the enzyme at low and moderate temperatures. The catalytic core domain of the psychrophilic cellulase CelG from P. haloplanktis has been expressed, purified and crystallized and a complete diffraction data set to 1.8 Angstrom has been collected. The space group was found to be P2(1)2(1)2(1), with unit-cell parameters a = 135.1, b = 78.4, c = 44.1 Angstrom. A molecular-replacement solution, using the structure of the mesophilic counterpart Cel5A from Erwinia chrysanthemi as a search model, has been found. [less ▲]

Detailed reference viewed: 23 (1 ULg)
Peer Reviewed
See detailA cellulase from a psychrophilic microorganism: 3D structures of its native form and its complex with cellobiose
Violot, S.; Gouet, P.; Haser, Richard et al

Poster (2002)

Detailed reference viewed: 5 (0 ULg)