References of "Vigouroux, Corinne"
     in
Bookmark and Share    
Full Text
See detailOverview of the geophysical data derived from long-term FTIR monitoring activities at the Jungfraujoch NDACC site (46.5ºN) and the PYGCHEM project
Mahieu, Emmanuel ULg; Bovy, Benoît ULg; Bader, Whitney ULg et al

Poster (2013, May 07)

We present an overview of the geophysical data deduced from long-term monitoring activities conducted at the Jungfraujoch station by the University of Liège. Typical results and trend investigations are ... [more ▼]

We present an overview of the geophysical data deduced from long-term monitoring activities conducted at the Jungfraujoch station by the University of Liège. Typical results and trend investigations are presented for hydrogen chloride (HCl) and carbonyl sulfide (OCS). We further display and briefly describe time series for new target gases, namely methanol (CH3OH) and HCFC-142b. We also show some preliminary results for ammonia (NH3) and peroxyacetyl nitrate (PAN). Finally, we present the PyGChem project, a Python interface to the GEOS-Chem model currently under development at ULg. [less ▲]

Detailed reference viewed: 85 (28 ULg)
Full Text
See detailOzone tropospheric and stratospheric trends (1995-2012) at six ground-based FTIR stations (28°N to 79°N)
Vigouroux, Corinne; De Mazière, Martine; Demoulin, Philippe ULg et al

Poster (2013, April)

In the frame of the Network for the Detection of Atmospheric Composition Change (NDACC), contributing ground-based stations have joined their efforts to homogenize and optimize the retrievals of ozone ... [more ▼]

In the frame of the Network for the Detection of Atmospheric Composition Change (NDACC), contributing ground-based stations have joined their efforts to homogenize and optimize the retrievals of ozone profiles from FTIR (Fourier transform infrared) solar absorption spectra. Using the optimal estimation method, distinct vertical information can be obtained in four layers: ground-10 km, 10-18 km, 18-27 km, and 27-42 km, in addition to total column amounts. In a previous study, Vigouroux et al. (2008) applied a bootstrap resampling method to determine the trends of the ozone total and four partial columns, over the period 1995-2004 at Western European stations. The updated trends for the period 1995-2009 have been published in the WMO 2010 report. Here, we present the updated trends and their uncertainties, for the 1995-2012 period, for the different altitude ranges, above five European stations (28°N-79°N) and above the station Thule, Greenland (77°N). In this work, the trends have been estimated using a multiple regression model including some explanatory variables responsible for the ozone variability, such as the Quasi Biennial Oscillation (QBO), the solar flux, the Arctic Oscillation (AO) or El Niño-Southern Oscillation (ENSO). A major result is the significant positive trend of ozone in the upper stratosphere, observed at the Jungfraujoch (47°N), which is a typical mid-latitude site, as well as at the high latitude stations. This positive trend in the upper stratosphere at Jungfraujoch provides a sign of ozone recovery at mid-latitudes. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
See detailOzone tropospheric and stratospheric trends (1995-2011) at six ground-based FTIR stations (28°N to 79°N)
Vigouroux, Corinne; De Mazière, Martine; Demoulin, Philippe ULg et al

Poster (2012, August)

Five ground-based stations in Western Europe, from 79°N to 28°N, all part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to homogenize and optimize ... [more ▼]

Five ground-based stations in Western Europe, from 79°N to 28°N, all part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to homogenize and optimize the retrievals of ozone profiles from FTIR (Fourier transform infrared) solar absorption spectra. Using the optimal estimation method, distinct vertical information can be obtained in four layers: ground—10 km, 10—18 km, 18—27 km, and 27—42 km, in addition to total column amounts. Vigouroux et al. (2008) applied a bootstrap resampling method to the ozone data to determine the trends of the total columns and of the partial columns in the above four layers, over the period 1995-2004. The updated trends for the period 1995-2009 have been published in the WMO 2010 report. Here, we present the updated trends, obtained using the bootstrap resampling method, for the 1995-mid-2011 period, for the five European stations and also for the station Thule, Greenland (77°N), which has joined this effort. The trends have also been estimated using a multiple regression model including the Quasi Biennial Oscillation (QBO) and the solar flux as explanatory variables. The trends obtained by the two methods will be compared and discussed. One of the major results is the significant positive trend observed in the upper stratosphere at the station Jungfraujoch (47°N), which provides a sign of ozone recovery at mid-latitudes. Significant positive trends are also observed in the upper stratosphere at the high latitude stations. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
See detailRetrieval of methanol (CH3OH) above the high-altitude Jungfraujoch station (46.5ºN): preliminary total column time series, long-term trend and seasonal modulation
Mahieu, Emmanuel ULg; Bader, Whitney ULg; Bovy, Benoît ULg et al

Poster (2012, June)

Methanol (CH3OH) is a key organic compound in the Earth’s troposphere, with reported concentrations of the order of a few ppbv. It is indeed the second most abundant organic atmospheric compound after ... [more ▼]

Methanol (CH3OH) is a key organic compound in the Earth’s troposphere, with reported concentrations of the order of a few ppbv. It is indeed the second most abundant organic atmospheric compound after methane. Its lifetime is estimated to a few days. Natural sources of CH3OH include plant growth, oceans, decomposition of plant matter, oxidation of methane,… They are complemented by anthropogenic (from vehicles, industry) and biomass burning emissions. Oxidation by the hydroxyl radical is the main sink, leading to the formation of carbon monoxide (CO) and formaldehyde (H2CO). The first reported retrievals of methanol used a microwindow extending from 992 to 999 cm-1 or from 1029 to 1037 cm-1. In both cases, lines of the strong ν8 band of CH3OH were adjusted, accounting for interferences by several isotopologues of ozone and by water vapor. In this contribution, we present first retrievals of CH3OH from observations recorded at the high-altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl), with a Bruker 120HR spectrometer, in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). A strategy maximizing the information content and combining the 992-999 and 1029-1037 cm-1 domains has been set up and used. A preliminary long-term CH3OH total column time series derived from the Jungfraujoch observational database allows us to investigate the seasonal variation and long-term trend of this species at northern mid-latitudes. [less ▲]

Detailed reference viewed: 58 (21 ULg)
Full Text
See detailSeeking for the optimum retrieval strategy of methanol (CH3OH) from ground-based high-resolution FTIR solar observations recorded at the high-altitude Jungfraujoch station (46.5ºN)
Mahieu, Emmanuel ULg; Bader, Whitney ULg; Lejeune, Bernard ULg et al

in Geophysical Research Abstracts (2012), 14

Methanol (CH3OH) is a key organic compound in the Earth’s troposphere, with reported concentrations of the order of a few ppbv. It is indeed the second most abundant organic atmospheric compound after ... [more ▼]

Methanol (CH3OH) is a key organic compound in the Earth’s troposphere, with reported concentrations of the order of a few ppbv. It is indeed the second most abundant organic atmospheric compound after methane (Jacob et al., 2005). The same authors have estimated its lifetime to a few days. Natural sources of CH3OH include plant growth, oceans, decomposition of plant matter, oxidation of methane,. . . They are complemented by anthropogenic (from vehicles, industry) and biomass burning emissions. Oxidation by the hydroxyl radical is the main sink, leading to the formation of carbon monoxide (CO) and formaldehyde (H2CO) (Rinsland et al., 2009; Stavrakou et al., 2011, and references therein). The first retrievals of methanol from ground-based Fourier Transform Infrared (FTIR) spectra have been reported by Rinsland et al. (2009), using spectra recorded at Kitt Peak (31.9ºN) and a microwindow extending from 992 to 999 cm-1. Soon after, Stavrakou et al. (2011) used another spectral interval from 1029 to 1037 cm-1, for methanol retrievals at Reunion Island (21ºS). In both cases, lines of the strong nu8 band of CH3OH were adjusted, accounting for interferences by several isotopologues of ozone and by water vapor. In this contribution, we will present first retrievals of CH3OH from observations recorded at the high-altitude station of the Jungfraujoch (46.5ºN, 8ºE, 3580 m asl), with a Bruker 120HR spectrometer, in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). We will implement existing retrieval approaches –and possibly additional one(s)– to determine which strategy is the most appropriate for our dry high-altitude site. If successful, a long-term CH3OH total column time series will be produced using the Jungfraujoch observational database, and we will perform preliminary investigations to characterize the seasonal and inter-annual variations of this species at northern mid-latitudes. [less ▲]

Detailed reference viewed: 77 (30 ULg)
Full Text
See detailOzone tropospheric and stratospheric trends (1995-2011) at six ground- based FTIR stations (34°S to 79°N)
Vigouroux, Corinne; Demoulin, Philippe ULg; Hase, Frank et al

Poster (2011, November)

Five ground-based stations in Western Europe, from 79°N to 28°N, all part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to homogenize and optimize ... [more ▼]

Five ground-based stations in Western Europe, from 79°N to 28°N, all part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to homogenize and optimize the retrievals of ozone profiles from FTIR (Fourier transform infrared) solar absorption spectra. Using the optimal estimation method, distinct vertical information can be obtained in four layers: ground—10 km, 10—18 km, 18—27 km, and 27—42 km, in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends. Vigouroux et al. (2008) applied this method to the ozone data and discussed the trends of the total columns and of the partial columns in the above four layers, over the period 1995-2004. The updated trends for the 1995-2009 period has been published in the WMO 2010 report. Here, we present the updated trends for the 1995-mid-2011 period, for the five European stations but also for a southern hemisphere station, Wollongong (34°S), which recently joined this ozone network. [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
See detailScientific Assessment of Ozone Depletion: 2010, Chapter 2 - Stratospheric Ozone and Surface Ultraviolet Radiation
Douglass, A.; Fioletov, V.; Godin-Beekmann, Sophie et al

Report (2011)

As a result of the Montreal Protocol, ozone is expected to recover from the effect of ozone-depleting substances (ODSs) as their abundances decline in the coming decades. The 2006 Assessment showed that ... [more ▼]

As a result of the Montreal Protocol, ozone is expected to recover from the effect of ozone-depleting substances (ODSs) as their abundances decline in the coming decades. The 2006 Assessment showed that globally averaged column ozone ceased to decline around 1996, meeting the criterion for the first stage of recovery. Ozone is expected to increase as a result of continued decrease in ODSs (second stage of recovery). This chapter discusses recent observations of ozone and ultraviolet radiation in the context of their historical records. Natural variability, observational uncertainty, and stratospheric cooling necessitate a long record in order to attribute an ozone increase to decreases in ODSs. The primary tools used in this Assessment for prediction of ozone are chemistry-climate models (CCMs). These CCMs are designed to represent the processes determining the amount of stratospheric ozone and its response to changes in ODSs and greenhouse gases. Eighteen CCMs have been recently evaluated using a variety of process-based compari-sons to measurements. The CCMs are further evaluated here by comparison of trends calculated from measurements with trends calculated from simulations designed to reproduce ozone behavior during an observing period. [less ▲]

Detailed reference viewed: 16 (2 ULg)
Full Text
See detailAdvanced exploitation of Ground-Based measurements for Atmospheric Chemistry and Climate Applications "AGACC"
De Mazière, Martine; De Backer, Hugo; Carleer, Michel et al

Report (2011)

We live in an era in which human activities are causing significant changes to the atmospheric environment which result in local to global consequences on the ecosystems. Changes in the atmospheric ... [more ▼]

We live in an era in which human activities are causing significant changes to the atmospheric environment which result in local to global consequences on the ecosystems. Changes in the atmospheric composition impact our climate via chemical and dynamical feedback mechanisms; in many instances they also affect air quality, and the health of the biosphere. Monitoring and understanding those changes and their consequences is fundamental to establish adequate actions for adaptation to and mitigation of the environmental changes. Furthermore, after implementation of regulatory measures like the Montreal Protocol, it is necessary to verify whether the measures are effective. This can only be achieved if we have adequate detection methods and a reliable long record of a series of key geophysical parameters. Thus the AGACC project contributes to the provision of basic new knowledge regarding the atmospheric composition and its changes, based on advanced groundbased monitoring, in combination with satellite and numerical modelling data. Its results are integrated in ongoing international research programmes. The general objective of AGACC has been to improve and extend the groundbased detection capabilities for a number of climate-related target species and, based hereupon, analyse past and present observations to derive new information about the atmospheric composition, its variability and long-term changes. Despite the advent of a growing and more performant fleet of Earth Observation satellites, ground-based observations are still indispensable to (1) guarantee long-term continuity, homogeneity and high quality of the data, and (2) to underpin the satellite data for calibration and (long-term) validation. A first target gas is atmospheric water vapour. It is the key trace gas controlling weather and climate. It is also the most important greenhouse gas in the Earth’s atmosphere. Its amount and vertical distribution are changing, but how and why? Especially in the upper troposphere - lower stratosphere, the radiative effects of changes in the water vapour are significant and should be quantified. The measurement of water vapour is a hot topic since several years. It is a challenge, because water vapour exhibits a large gradient in its concentration when going from the ground to the stratosphere, and because it is highly variable in time and space. For example, we have found that the time scale of the variations of the total water vapour amount at Jungfraujoch is in the order of minutes. In AGACC, we have therefore investigated various experimental techniques to measure the concentration of water vapour in the atmosphere, focusing on the total column as well as on the vertical distribution in the troposphere up to the lower stratosphere. The retrieval of water vapour vertical profiles and total columns from ground-based FTIR data has been initiated at three very different stations where correlative data for verification are available, namely Ukkel (± sea level, mid-latitude), Ile de La Réunion (± sea level, tropical) and Jungfraujoch (high altitude, mid-latitude), with promising results. In particular, at Jungfraujoch, it has been demonstrated that the precision of the FTIR integrated water vapour (IWV) measurements is of order 2%. The capability to retrieve individual isotopologues of water vapour, and to monitor their daily and diurnal variations, has also been demonstrated. This could open new ways to study in the future the role of water vapour in the radiative balance, the global circulation, precipitation etc. We also started joint exploitation of ground-based FTIR and satellite IASI data for water vapour and its isotopologues, in order to exploit fully the potential of the existing instrumentation. A correction method for the radiosoundings at Ukkel has been successfully implemented, resulting in a homogeneous and reliable time series from 1990 to 2008 from which trends in upper troposphere humidity (UTH) and tropopause characteristics have been derived. One observes a rising UTH until September 2001, followed by a decline, accompanied by a descent and heating of the tropopause up to the turning point and an ascent and cooling afterwards. The changes after September 2001 in the upper troposphere can be explained by surface heating and convective uplift. At Jungfraujoch, one does not observe any significant trend in the total water vapour abundance above the station over the 1988-2010 time period, although significant positive summer and negative winter trends have been detected. We have made a quantitative statistical comparison between ground-based FTIR, CIMEL, GPS and integrated (corrected) radio sounding measurements of the IWV at Ukkel. This work is important to better characterize the different sensors in order to exploit together different observations made by different instruments. A second target species is atmospheric aerosol. There is a very large variety of aerosol both from natural or anthropogenic origin. One of the reasons why they are so important is that they affect the optical properties of the atmosphere. In particular, it has been demonstrated in previous studies that the aerosols have a large impact on the quantity of harmful UV-B radiation received at the Earth’s surface. The latest IPCC Report also stressed that the radiative forcing caused by atmospheric aerosols is one of the largest uncertainties in determining the total radiative forcing in the atmosphere. Better monitoring capabilities of aerosol properties can therefore improve our understanding and forecasting of the atmospheric processes and evolution, and in particular of UV-B and climate changes. Several measurement techniques are now operational in the AGACC consortium for the ground-based monitoring of aerosol properties. These are the Brewer spectrometer and CIMEL observations at Ukkel, the latter contributing also to the AERONET network since July 2006, and the newly developed MAXDOAS observations. Unlike CIMEL and Brewer measurements, that provide the total Aerosol Optical Depth, it has been demonstrated that the MAXDOAS measurements also provide additional information about the vertical distribution of the aerosol extinction in the lowest kilometres of the troposphere. A better understanding of the ultimate capabilities of MAXDOAS aerosol remote sensing has been gained through participation to the international CINDI campaign (Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments ) in summer 2009. The combination of Brewer, CIMEL and MAXDOAS instruments gives us a remote-sensing dataset that will enable a more comprehensive characterization of the tropospheric aerosol optical properties. The usefulness of these aerosol observations has already been demonstrated in the improvement of the UVindex predictions for the general public. Another application is their use as input data in the retrieval of vertical profiles of tropospheric pollutants from MAXDOAS measurements, like tropospheric NO2 and formaldehyde. Third we have focused on a few climate-related trace gases. Changing greenhouse gas and aerosol concentrations directly affect the radiative budget of the atmosphere, and therefore climate. But many species known as pollutants like carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons, - often related to fossil fuel or biomass burning -, also affect climate through their role in chemical reactions that produce tropospheric ozone, which is a well-known greenhouse gas, or that modify the lifetime of gases like methane, or the oxidation capacity of the atmosphere. Therefore in AGACC, we have focused on the measurement of a number of trace gases that are subject to changing concentrations, that directly or indirectly affect climate, and that are either difficult to monitor or that have not yet been measured from the ground. We have included attempts to observe distinctly some isotopologues, because the isotopic ratios observed in an airmass provide information on its history, and because the FTIR solar absorption measurements provide a rather unique capability hereto. The investigated species are the isotopologues of CH4 and CO, and hydrogen cyanide (HCN), as examples of biomass burning tracers, some hydrocarbons like formaldehyde (HCHO), ethylene (C2H4) and acetylene (C2H2), and HCFC-142b, a replacement product for CFCs and a greenhouse gas. In many cases, retrieval strategies had to be adapted when going from one site to another with different atmospheric conditions, especially when the local humidity and abundances are very different as is the case between Jungfraujoch (dry, high altitude, mid-latitude) and Ile de La Réunion (humid, low altitude, low latitude). Still we have been able to show the feasibility of retrieving particular trace gas information even under difficult conditions. Many of our results have been compared to correlative data, to validate the approach and to gain complementary information. It is also important to note that the retrieval strategies developed in AGACC have regularly been presented to the global Network for the Detection of Atmospheric Composition Change (NDACC) UV-Vis and Infrared communities and have often been adopted by others or even proposed for adoption as a standard in the community (e.g., for hydrogen cyanide (HCN)). In particular: We have been able to study the seasonal variations of HCN at the Jungfraujoch and at Ile de La Réunion, and to show the dominant impact of biomass burning. Formaldehyde was studied in much detail at Ukkel, Jungfraujoch and Ile de la Réunion. The challenge for detection at Jungfraujoch is the small abundance (about 10 times smaller than at Ukkel and Ile de La Réunion); a particular observation strategy was developed successfully, resulting in a time series that already shows the day-to-day and seasonal variations. At Ile de La Réunion, comparisons of FTIR, MAXDOAS, satellite and model data have (1) shown the good agreement between the various data sets, but also, (2), the variability of HCHO (diurnal, seasonal, day-to-day), and (3), thanks to the complementarities of the various data sets, they have enabled us to learn more about the long-range transport of Non-methane Volatile Organic Compounds (NMVOCS, precursors of HCHO) and deficiencies in the models. It was shown that fast, direct transport of NMVOCS from Madagascar has a significant impact on the HCHO abundance and its variability at Ile de La Réunion, and that this is underestimated in the model. Significant progress was made as to the detection of 13CH4 and CH3D from ground-based FTIR observations, both at Jungfraujoch and Ile de La Réunion. To our knowledge, it is the first time that a d13C data set is derived from ground-based FTIR observations. More work is needed to improve the CH3D retrieval at Ile de La Réunion, and to interpret the results, in combination with models. Also for the first time, 12CO and 13CO have been retrieved individually at Jungfraujoch. The d13C time series shows significant seasonal and interannual changes. As to the hydrocarbon ethylene, it is shown that it can be detected at Jungfraujoch only in spectra at low solar elevation, given its small atmospheric abundance. Regarding acetylene, the observed time series at Jungfraujoch and Ile de La Réunion show clear seasonal variations and enhancements due to the impact of biomass burning events, correlated with enhancements in CO, C2H6 and HCN. It is not clear yet whether we can reliably retrieve the concentration of HCFC- 142b, a replacement product that is increasing strongly in the troposphere. New line parameters for the interfering species HFC-134a are required to confirm/infirm the preliminary results. This highlights again the importance of the laboratory work for providing such parameters. Improved line parameters have been obtained for water vapour and its isotopologues, ethylene and formic acid. These AGACC results have been integrated in the international spectroscopic databases. We also showed that line intensities available around 2096 cm–1 for the 13C16O isotopologue of carbon monoxide in the HITRAN database seem to be accurate to 2%. We failed to improve line intensities for the 13.6 μm region of acetylene. The new data sets that have been derived in AGACC from FTIR and MAXDOAS observations have been archived in the NDACC data centre, where they are available for users (generally modelers and satellite teams). In addition, they are stored locally and are available to users upon request. AGACC results have been reported to the international scientific community, via the literature, via integration in geophysical or spectroscopic databases, and via participation to international research initiatives like the Atmospheric Water Vapour in the Climate System (WAVACS) Cost Action, the International Space Science Institute (ISSI) Working Group on Atmospheric Water Vapour, the International Union of Pure and Applied Chemistry (IUPAC) project, the International CINDI campaign, etc. The results have already found important scientific applications. A few examples are worth mentioning: the re-evaluation of methane emissions in the tropics from SCIAMACHY based on the new H2O spectroscopy, and the improved retrievals of HCOOH from the satellite experiments ACE-FTS and IASI, and from the ground. In the longer-term, the AGACC results will no doubt benefit the research in atmospheric sciences –in particular in the monitoring of its composition changes–, which is the fundamental basis of environmental assessment reports for supporting policy makers. [less ▲]

Detailed reference viewed: 118 (5 ULg)
Full Text
See detailDetermination of isotopic fractionation delta13C of methane from ground-based FTIR observations performed at the Jungfraujoch
Duchatelet, Pierre ULg; Mahieu, Emmanuel ULg; Sussmann, Ralf et al

Poster (2009, April)

Atmospheric methane (CH4) is a strong greenhouse gas that has important chemical impacts on both the troposphere and the stratosphere. In the troposphere, oxidation of methane is a major regulator of OH ... [more ▼]

Atmospheric methane (CH4) is a strong greenhouse gas that has important chemical impacts on both the troposphere and the stratosphere. In the troposphere, oxidation of methane is a major regulator of OH and is a source of formaldehyde, carbon monoxide and hydrogen. In the stratosphere, CH4 plays a central role (i), due to its contribution to the stratospheric water vapor budget, and (ii), as a sink for chlorine atoms which reduces the rate of stratospheric ozone depletion. Because the different sources of methane (natural and anthropogenic like wetlands, rice paddies, termites, natural gas escape, biomass burning, etc) have distinct 13C/12C ratios (usually reported in “delta” notation δ13C), measurements of atmospheric 13CH4 content, in addition to those of the main isotopologue (12CH4), can be used to investigate individual source strengths as well as their spatial and temporal distributions. Characterization of the isotopic fractionation of methane is therefore important, for example, to help models constrain estimates of the global methane budget. However, experimental data for the 13C/12C isotope ratio are sparse. The currently accepted average value of δ13C in atmospheric methane is about -47‰ (Platt et al., 2004). The first goal of this work is to develop and to characterize (in terms of information content and error budget) an original retrieval approach to derive 13CH4 columns from ground-based Fourier transform infrared (FTIR) spectra recorded at the International Scientific Station of the Jungfraujoch (ISSJ; 46.5°N, 8.0°E, 3580m a.s.l., Swiss Alps). The retrieval strategy is based on a Tikhonov L1 approach which has been originally developed for 12CH4 by Sussmann et al. (2008) [see also contributions by Sussmann et al. to this conference (EGU2009-7869)]. In order to validate our 13CH4 products, comparisons with satellite ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) measurements are performed. Then, atmospheric δ13C ratios derived from the FTIR measurements will be compared to values published in the literature and critically discussed. References: Platt, U., W. Allan and D. Lowe, Hemispheric average Cl atom concentration from 13C/12C ratios in atmospheric methane, Atmos. Chem. Phys., 4, 2393-2399, 2004. Sussmann, R., Forster, F., Borsdorff, T., et al.: Satellite validation of column-averaged methane on global scale: ground-based data from 15 FTIR stations versus last generation ENVISAT/SCIAMACHY retrievals, IGAC 10th International Conference, Annecy, France, 7-12 Sep 2008. [less ▲]

Detailed reference viewed: 81 (11 ULg)
Full Text
Peer Reviewed
See detailTrend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments
Gardiner, Tom; Forbes, A.; De Mazière, Martine et al

in Atmospheric Chemistry and Physics (2008), 8(22), 6719-6727

This paper describes the statistical analysis of annual trends in long term datasets of greenhouse gas measurements taken over ten or more years. The analysis technique employs a bootstrap resampling ... [more ▼]

This paper describes the statistical analysis of annual trends in long term datasets of greenhouse gas measurements taken over ten or more years. The analysis technique employs a bootstrap resampling method to determine both the long-term and intra-annual variability of the datasets, together with the uncertainties on the trend values. The method has been applied to data from a European network of ground-based solar FTIR instruments to determine the trends in the tropospheric, stratospheric and total columns of ozone, nitrous oxide, carbon monoxide, methane, ethane and HCFC-22. The suitability of the method has been demonstrated through statistical validation of the technique, and comparison with ground-based in-situ measurements and 3-D atmospheric models. [less ▲]

Detailed reference viewed: 51 (9 ULg)
Full Text
See detailValidation of SCIAMACHY CH4 scientific products using ground-based FTIR measurements
Dils, Bart; De Mazière, Martine; Vigouroux, Corinne et al

Poster (2008, September)

In the framework of the past EVERGREEN project, the development of three scientific algorithms, namely WFM-DOAS (henceforward called WFMD), IMAP-DOAS (henceforward called IMAP) and IMLM, commenced in ... [more ▼]

In the framework of the past EVERGREEN project, the development of three scientific algorithms, namely WFM-DOAS (henceforward called WFMD), IMAP-DOAS (henceforward called IMAP) and IMLM, commenced in order to retrieve the total column amounts of key atmospheric trace gases, including CH4, from SCIAMACHY nadir observations in its near-infrared channels. Since then, the retrieval products of these three algorithms, have undergone serious improvements. At key phases in their development, the products have been validated by using a network of ground-based FTIR instruments. Parallel with the improved SCIAMACHY data, the FTIR groups have taken steps to optimise and harmonise their own datasets and as such the different validation efforts always used the state-of-the-art FTIR dataset. Here we present an overview of the evolution of the CH4 algorithms by re-validating the data, using the same FTIR dataset (as developed under the UFTIR project) for all algorithm versions. [less ▲]

Detailed reference viewed: 192 (6 ULg)
Full Text
See detailSatellite validation of column-averaged methane on global scale: ground-based data from 15 FTIR stations versus last generation ENVISAT/SCIAMACHY retrievals
Sussmann, Ralf; Foster, Frank; Borsdorff, Tobias et al

Poster (2008, September)

Previous work has shown that the precision of ground-based mid-infrared (MIR) FTIR spectrometry is sufficient to detect day-to-day variability of columnar methane, while first retrievals from ENVISAT ... [more ▼]

Previous work has shown that the precision of ground-based mid-infrared (MIR) FTIR spectrometry is sufficient to detect day-to-day variability of columnar methane, while first retrievals from ENVISAT/SCIAMACHY (channel 8) satellite measurements were impacted by a significant time-dependent bias due to detector icing. This prevented insight into true methane temporal variability at that time. The goal of our updated study is to investigate the precision of the last generation (channel 6) SCIAMACHY retrievals IMAP-DOAS v49 and WFM-DOAS v1.0 in comparison to retrievals from ground-based MIR measurements of the European FTIR network. We first briefly discuss the origin and magnitude of the natural variability of columnar methane. Subsequently, our study investigates all factors which can be optimized to improve precision of ground-based MIR-FTIR retrievals of columnar methane. This includes an optimized Tikhonov-type regularization tuned in a way to minimize the diurnal variability of retrieved columnar methane. We also discuss ways to select and average individual-pixel satellite data in order to reflect true day-to-day variability and make them comparable to ground-based data. [less ▲]

Detailed reference viewed: 55 (13 ULg)
Full Text
See detailImpact of different spectroscopic datasets on CH4 retrievals from Jungfraujoch FTIR spectra
Duchatelet, Pierre ULg; Mahieu, Emmanuel ULg; Demoulin, Philippe ULg et al

Poster (2008, August)

Methane (CH4) is released in the atmosphere by natural processes (e.g. wetlands, termites) as well as by anthropogenic activities (e.g. fossil fuel exploitation, rice agriculture, biomass burning, etc ... [more ▼]

Methane (CH4) is released in the atmosphere by natural processes (e.g. wetlands, termites) as well as by anthropogenic activities (e.g. fossil fuel exploitation, rice agriculture, biomass burning, etc). Due to its high warming potential and its relatively long chemical lifetime (~9 years), atmospheric methane plays a major role in the radiative forcing responsible of the greenhouse effect. Methane also affects climate by influencing tropospheric ozone and stratospheric water. The cycle of methane is complex and to understand it requires a complete study of its emissions and its budget of sources and sinks. High quality methane data sets are needed to perform such studies. CH4 vertical distributions as well as total and partial column time series can be retrieved from high-resolution ground-based FTIR spectra, using, e.g., the SFIT-2 algorithm which implements the Optimal Estimation Method of Rodgers. A set of 5 microwindows - located in the 2 to 5.5 µm range and jointly adopted by all partners involved in the European HYMN project (www.knmi.nl/samenw/hymn/) - are fitted simultaneously during the retrieval procedure. Although this approach provides relatively high information content, CH4 retrieved profiles very often present large oscillations in the troposphere, which might result partly from inappropriate or inconsistent spectroscopic parameters. Significant improvements on retrieval quality could be reached by using more accurate CH4 spectroscopic parameters. This contribution compares 3 different sets of CH4 spectroscopic parameters (including HITRAN 2004 and 2 versions where HITRAN 2004 have been updated by recent laboratory measurements), which have been tested using one year of high resolution FTIR solar observations performed at the International Scientific Station of the Jungfraujoch (Swiss Alps, 46.5°N, 8.0 °E, 3580m a.s.l.). The impact of these different spectroscopic datasets on retrieved CH4 partial columns and vertical profiles, as well as on the fitting quality (residuals) and on the error budget characterizing our CH4 products will be evaluated and discussed. [less ▲]

Detailed reference viewed: 25 (12 ULg)
Full Text
Peer Reviewed
See detailTechnical Note: New ground-based FTIR measurements at Ile de La Réunion: observations, error analysis, and comparisons with independent data
Senten, Cindy; De Mazière, Martine; Dils, Bart et al

in Atmospheric Chemistry and Physics (2008), 8(13), 3483-3508

Ground-based high spectral resolution Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the ... [more ▼]

Ground-based high spectral resolution Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two FTIR measurement campaigns in 2002 and 2004, held at Ile de La Réunion (21° S, 55° E). These campaigns represent the first FTIR observations carried out at a southern (sub)tropical site. They serve the initiation of regular, long-term FTIR monitoring at this site in the near future. To demonstrate the capabilities of the FTIR measurements at this location for tropospheric and stratospheric monitoring, a detailed report is given on the retrieval strategy, information content and corresponding full error budget evaluation for ozone (O3), methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), ethane (C2H6), hydrogen chloride (HCl), hydrogen fluoride (HF) and nitric acid (HNO3) total and partial column retrievals. Moreover, we have made a thorough comparison of the capabilities at sea level altitude (St.-Denis) and at 2200 m a.s.l. (Maïdo). It is proved that the performances of the technique are such that the atmospheric variability can be observed, at both locations and in distinct altitude layers. Comparisons with literature and with correlative data from ozone sonde and satellite (i.e., ACE-FTS, HALOE and MOPITT) measurements are given to confirm the results. Despite the short time series available at present, we have been able to detect the seasonal variation of CO in the biomass burning season, as well as the impact of particular biomass burning events in Africa and Madagascar on the atmospheric composition above Ile de La Réunion. We also show that differential measurements between St.-Denis and Maïdo provide useful information about the concentrations in the boundary layer. [less ▲]

Detailed reference viewed: 48 (15 ULg)
Full Text
Peer Reviewed
See detailValidation of ACE-FTS v2.2 methane profiles from the upper troposphere to the lower mesosphere
De Mazière, Martine; Vigouroux, Corinne; Bernath, Peter et al

in Atmospheric Chemistry and Physics (2008), 9(9), 2421-2435

The ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) solar occultation instrument that was launched onboard the Canadian SCISAT-1 satellite in August 2003 is measuring vertical ... [more ▼]

The ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) solar occultation instrument that was launched onboard the Canadian SCISAT-1 satellite in August 2003 is measuring vertical profiles from the upper troposphere to the lower mesosphere for a large number of atmospheric constituents. Methane is one of the key species. The version v2.2 data of the ACE-FTS CH4 data have been compared to correlative satellite, balloon-borne and ground-based Fourier transform infrared remote sensing data to assess their quality. The comparison results indicate that the accuracy of the data is within 10% in the upper troposphere – lower stratosphere, and within 25% in the middle and higher stratosphere up to the lower mesosphere (<60 km). The observed differences are generally consistent with reported systematic uncertainties. ACE-FTS is also shown to reproduce the variability of methane in the stratosphere and lower mesosphere. [less ▲]

Detailed reference viewed: 33 (8 ULg)
Full Text
See detailObservations of halogens, CO, CH4, and H2CO at Ile de La Réunion from ground-based FTIR and MAXDOAS campaign measurements
De Mazière, Martine; Vigouroux, Corinne; Hendrick, François et al

Poster (2008, April)

Ile de La Réunion is a complementary site in the Network for the Detection of Atmospheric Composition Change (NDACC), situated in the southern tropics, at 21°S, 55°E. In support of a better understanding ... [more ▼]

Ile de La Réunion is a complementary site in the Network for the Detection of Atmospheric Composition Change (NDACC), situated in the southern tropics, at 21°S, 55°E. In support of a better understanding of atmospheric chemistry and physics above tropical regions, we have implemented new ground-based MAX-DOAS (multi-axis DOAS) and FTIR (Fourier transform infrared) observations at this site, on a campaign basis since 2002. At present, we have data from 2002 (month of October), 2004 (August to October) and 2007 (end of May until the end of October). Additional campaigns are planned until the availability of a new infrastructure for permanent observations at the Maido (~ 2000 masl), around 2010. Here, we report on the available time series for a number of tropospheric species (CO, H2CO and CH4,) and stratospheric halogen species, comparisons between MAX-DOAS and FTIR data of H2CO, and comparisons of ground-based and satellite data. [less ▲]

Detailed reference viewed: 52 (4 ULg)
Full Text
See detailImpact of different spectroscopic datasets on CH4 retrievals from Jungfraujoch FTIR spectra
Duchatelet, Pierre ULg; Mahieu, Emmanuel ULg; Demoulin, Philippe ULg et al

(2008)

Due to its high warming potential and its relatively long chemical lifetime (~9 years), atmospheric methane (CH4) plays a major role in the radiative forcing responsible of the greenhouse effect. Methane ... [more ▼]

Due to its high warming potential and its relatively long chemical lifetime (~9 years), atmospheric methane (CH4) plays a major role in the radiative forcing responsible of the greenhouse effect. Methane also affects climate by influencing tropospheric ozone and stratospheric water. High quality methane data sets are needed to understand its cycle and evaluate its budget of sources and sinks. Methane vertical distribution as well as total and partial column time series can be retrieved from high-resolution ground-based FTIR spectra, using, e.g., the SFIT-2 algorithm which implements the Optimal Estimation Method of Rodgers . However, although several retrieval approaches characterized by relatively high information content exist, methane retrieved profiles very often present large oscillations in their tropospheric range, which might result partly from inappropriate or inconsistent parameters. Significant improvements on retrieval quality should therefore be reached by using more accurate or compatible CH4 spectroscopic data. The main purpose of this contribution is to test and compare three different sets of CH4 spectroscopic parameters and to quantify their impact on CH4 retrieved products as well as on the fitting quality. [less ▲]

Detailed reference viewed: 23 (6 ULg)
Full Text
See detailObservations of CH4, CH3D and H2CO at Ile de La Réunion from ground-based FTIR and MAXDOAS campaign measurements
Vigouroux, Corinne; De Mazière, Martine; Van Roozendael, Michel et al

Poster (2007, November)

Ile de La Réunion (21°S, 55°E) is candidate to become a primary station the ground-based Network for the Detection of Atmospheric Composition Change (NDACC) which was formed to provide long-term ... [more ▼]

Ile de La Réunion (21°S, 55°E) is candidate to become a primary station the ground-based Network for the Detection of Atmospheric Composition Change (NDACC) which was formed to provide long-term monitoring of atmospheric trace gases at globally distributed sites. Ground-based network data are also very valuable for the validation of satellite data, such as SCIAMACHY, ACE-FTS and IASI. Up to now, only a few NDACC stations are located in the Southern Hemisphere, and none of them is at subtropical latitude. Three campaigns of FTIR measurements were made at the Ile de La Réunion in preparation of a near future permanent installation, namely in October 2002, from August to October 2004, and from May to November 2007. A UV-visible Multi-Axis DOAS (MAXDOAS) instrument was operated at the same site from July 2004 to June 2005. The inversion algorithms for both the MAXDOAS and FTIR spectral data analyses use the Optimal Estimation Method to derive information about the vertical distribution of the target gases. We will present the vertical profiles and total columns of the greenhouse gas CH4 and its isotopologue CH3D, obtained from the FTIR measurements. For the latter, the number of degrees of freedom for signal is close to one, limiting the information to the total column abundance. Early comparisons with correlative measurements from satellite data will be discussed. Formaldehyde (H2CO) is a source of HOx and an indicator for biogenic emissions, biomass burning, and anthropogenic pollution. It can be measured by both the FTIR and UV-Visible MAXDOAS instruments. The total columns obtained by the two techniques in the common period of measurements August-October 2004 will be discussed. We will also show the comparisons of the time series for formaldehyde from both instruments with correlative SCIAMACHY data above La Réunion. [less ▲]

Detailed reference viewed: 85 (9 ULg)