References of "Vigouroux, C"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAcetylene (C2H2) and hydrogen cyanide (HCN) from IASI satellite observations: global distributions, validation, and comparison with model
Duflot, V.; Wespes, C.; Clarisse, L. et al

in Atmospheric Chemistry & Physics Discussions (2015), 15(10), 14357--14401

We present global distributions of C2H2 and HCN total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI). These distributions are obtained with a fast method allowing to retrieve ... [more ▼]

We present global distributions of C2H2 and HCN total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI). These distributions are obtained with a fast method allowing to retrieve C2H2 abundance globally with a 5% precision and HCN abundance in the tropical (subtropical) belt with a 10% (30%) precision. IASI data are compared for validation purposes with ground-based Fourier Transform Infrared (FTIR) spectrometer measurements at four selected stations. We show that there is an overall agreement between the ground-based and space measurements. Global C2H2 and subtropical HCN abundances retrieved from IASI spectra show the expected seasonality linked to variations in the anthropogenic emissions and seasonal biomass burning activity, as well as exceptional events, and are in good agreement with previous spaceborne studies. IASI measurements are also compared to the distributions from the Model for Ozone and Related Chemical Tracers, version 4 (MOZART- 4). Seasonal cycles observed from satellite data are reasonably well reproduced by the model. However, the model seems to overestimate (underestimate) anthropogenic (biomass burning) emissions and a negative global mean bias of 1% (16 %) of the model relative to the satellite observations was found for C2H2 (HCN). [less ▲]

Detailed reference viewed: 12 (0 ULg)
See detailRemote sensing of the atmospheric composition in the infrared spectral region within the Network for the Detection of Atmospheric Composition Change (NDACC) and the Total Carbon Column Observing Network (TCCON)
Notholt, J; Blumenstock, T; Deutscher, N et al

Conference (2015, May 12)

Remote sensing has been established as a powerful tool in atmospheric research. Throughout the last decades satellite and ground-based remote sensing instruments and methods have been developed to sample ... [more ▼]

Remote sensing has been established as a powerful tool in atmospheric research. Throughout the last decades satellite and ground-based remote sensing instruments and methods have been developed to sample the atmosphere from the microwave to the UV/Vis. The international ground based networks NDACC-IR and TCCON are based on solar absorption spectrometry in the infrared. Both networks consist of more than 30 observations sites around the globe, from the high Arctic through mid-latitudes and the tropics to the southern hemisphere and Antarctica. NDACC concentrates on stratospheric observations in relation to ozone chemistry, in many instances, information on the vertical distribution of the target species is determined. Measured trace gases include O3, HCl, HF, HNO3, ClONO2 and many others. In addition, the tropospheric composition is studied by measuring anthropogenic and biogenic species including HCN, OCS, H2O, CO, CH2O, C2H6, and C2H2. The aim of TCCON is to acquire accurate and precise column-averaged abundances of CO2, CH4, N2O, i.e. atmospheric trace gases which have a very small natural variability. TCCON measurements are linked to WMO calibration scales by comparisons with co-incident in situ profiles measured from aircraft or balloon. Results from both networks have been used in many studies in relation to stratospheric ozone chemistry, air-pollution, and with regard to the carbon-cycle. Long-term series are necessary for trend analysis, gaining insight into annual and longer term variability and placing into context shorter term process studies. Due to the similar observation geometry, the ground-based observations are optimally suitable for satellite and model validation and form an essential part of many satellite projects. They also play an important role in the validation of the Copernicus Atmospheric Monitoring Service. In our contribution we will give an overview on the current status of both networks, ongoing efforts to improve network coverage, precision and accuracy, and several examples of scientific highlights. [less ▲]

Detailed reference viewed: 41 (0 ULg)
Full Text
See detailRetrieval of ammonia from ground-based FTIR measurements and its use for validation of satellite observations by IASI
Dammers, E; Palm, M; Warneke, T et al

in Geophysical Research Abstracts (2015, April 13), 17

Atmospheric Ammonia (NH3) has a major impact on human health and ecosystem services and plays a major role in the formation of aerosols [Erisman et al.,2013; Paulot and Jacob 2014]. NH3 concentrations are ... [more ▼]

Atmospheric Ammonia (NH3) has a major impact on human health and ecosystem services and plays a major role in the formation of aerosols [Erisman et al.,2013; Paulot and Jacob 2014]. NH3 concentrations are highly variable in space and time with overall short lifetime due to deposition and aerosol formation. The global atmospheric budget of nitrogen and in turn NH3 is still uncertain which asks for more ground-based and satellite observations around the world. Recent papers have described the possibility to measure NH3 with satellite infrared sounders which open up the way for calculations of global and regional nitrogen budgets [Clarisse et al 2009,Van Damme et al 2014a]. Validation of the satellite observations is essential to determine the uncertainty in the signal and its potential use. So far available surface layer observations of atmospheric NH3 concentrations have been used for comparisons with total columns retrieved from satellite observations [Van Damme 2014b]. We developed a retrieval for NH3 column density concentrations (molecules NH3/cm2) by fitting a set of spectral windows to ground-based solar absorption Fourier transform infrared (FTIR) measurements with the spectral fitting program SFIT4 [Hase et al., 2004]. The retrieval is then applied to FTIR measurements from a set of spectrometer sites from the Network for detection of Atmospheric Composition Change (NDACC) to retrieve NH3 columns for the sites located in Bremen, Germany; Lauder, New Zealand; Jungfraujoch, Switzerland; and the island of Reunion, France. Using eight years (2005-2013) of retrieved NH3 columns clear seasonal cycles are observed for each of the stations. Maximum concentrations can be related to NH3 emission sources, specific for the regions. A comparison between the retrieved NH3 columns and observations from the recent IASI- NH3 product [Van Damme et al, 2014a] using strict spatial and temporal criteria for the selection of observations showed a good correlation (R=0.82; slope=0.63). The IASI- NH3 columns for the Bremen and Lauder area show similar temporal cycles when compared to the FTIR observations. [less ▲]

Detailed reference viewed: 24 (1 ULg)
Full Text
Peer Reviewed
See detailPast changes in the vertical distribution of ozone – Part 3: Analysis and interpretation of trends
Harris, N. R. P.; Hassler, B.; Tummon, F. et al

in Atmospheric Chemistry & Physics Discussions (2015), 15(6), 8565--8608

Trends in the vertical distribution of ozone are reported and compared for a number of new and recently revised datasets. The amount of ozone-depleting compounds in the stratosphere (as measured by ... [more ▼]

Trends in the vertical distribution of ozone are reported and compared for a number of new and recently revised datasets. The amount of ozone-depleting compounds in the stratosphere (as measured by Equivalent Effective Stratospheric Chlorine – EESC) maximised in the second half of the 1990s. We therefore examine the trends in the periods before and after that peak to see if any change in trend is discernible in the ozone record. Prior to 1998, trends in the upper stratosphere (~ 45 km, 4 hPa) are found to be −5 to −10% per decade at mid-latitudes and closer to −5% per decade in the tropics. No trends are found in the mid-stratosphere (28 km, 30 hPa). Negative trends are seen in the lower stratosphere at mid-latitudes in both hemispheres and in the deep tropics. However it is hard to be categorical about the trends in the lower stratosphere for three reasons: (i) there are fewer measurements, (ii) the data quality is poorer, and (iii) the measurements in the 1990s are perturbed by aerosols from the Mt. Pinatubo eruption in 1991. These findings are similar to those reported previously even though the measurements for the two main satellite instruments (SBUV and SAGE II) and the ground-based Umkehr and ozonesonde stations have been revised. There is no sign of a continued negative trend in the upper stratosphere since 1998: instead there is a hint of an average positive trend of ~ 2% per decade in mid-latitudes and ~ 3% per decade in the tropics. The significance of these upward trends is investigated using different assumptions of the independence of the trend estimates found from different datasets. The averaged upward trends are significant if the trends derived from various datasets are assumed to be independent, but are generally not significant if the trends are not independent. This arises because many of the underlying measurement records are used in more than one merged dataset. At this point it is not possible to say which assumption is best. Including an estimate of the drift of the overall ozone observing system decreases the significance of the trends. The significance will become clearer as (i) more years are added to the observational record, (ii) further improvements are made to the historic ozone record (e.g. through algorithm development), and (iii) the data merging techniques are refined, particularly through a more rigorous treatment of uncertainties. [less ▲]

Detailed reference viewed: 39 (1 ULg)
Full Text
Peer Reviewed
See detailTrends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe
Vigouroux, C; Blumenstock, T; Coffey, M et al

in Atmospheric Chemistry and Physics (2015), 15

Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2 % but also independent partial column amounts in about four ... [more ▼]

Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2 % but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45 km, with a precision of 5–6 %. We use eight of the Network for the Detection of Atmospheric Composition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely, Ny-Ålesund (79ºN), Thule (77ºN), Kiruna (68ºN), Harestua (60ºN), Jungfraujoch (47ºN), Izaña (28ºN), Wollongong (34ºS) and Lauder (45ºS). The length of the FTIR time series varies by station but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, quasi-biennial oscillation (QBO), El Niño–Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen–Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995–2003 period, and non-significant when considering the total columns. The trends for mid-latitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere and at Wollongong for the total columns and the lower and middle stratospheric columns where they are found positive. At Jungfraujoch, the upper stratospheric trend is close to significance (+0.9 ± 1.0 %/decade). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seem to be needed to observe it at the northern mid-latitude station. [less ▲]

Detailed reference viewed: 31 (4 ULg)
Full Text
See detailPas d'image fiable de notre atmosphère sans mesures depuis le sol !
De Mazière, M; De Backer, H; Mahieu, Emmanuel ULg et al

Article for general public (2014)

Nous sommes actuellement confrontés à une atmosphère en évolution : les concentrations de ce qu’on appelle les gaz à effet de serre augmentent, la quantité d’ozone stratosphérique diminue, en particulier ... [more ▼]

Nous sommes actuellement confrontés à une atmosphère en évolution : les concentrations de ce qu’on appelle les gaz à effet de serre augmentent, la quantité d’ozone stratosphérique diminue, en particulier au-dessus de l’Antarctique où elle forme chaque année un ‘trou’ dans la couche d’ozone, et l’air n’est pas tous les jours très sain... Comment pouvons-nous détecter et surveiller ces changements pour, si nécessaire, prendre des mesures pour tenter de les contrecarrer ? [less ▲]

Detailed reference viewed: 22 (0 ULg)
Full Text
Peer Reviewed
See detailMeasurements of hydrogen cyanide (HCN) and acetylene (C2H2) from the Infrared Atmospheric Sounding Interferometer (IASI)
Duflot, V.; Hurtmans, D.; Clarisse, L. et al

in Atmospheric Measurement Techniques (2013), 6

Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric ... [more ▼]

Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing, we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S, 55° E) and Jungfraujoch (46° N, 8° E) in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI). A first order comparison with local ground-based Fourier transform InfraRed (FTIR) measurements has been carried out allowing tests of seasonal consistency which is reasonably captured, except for HCN at Jungfraujoch. The IASI data shows a greater tendency to high C2H2 values. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values. [less ▲]

Detailed reference viewed: 97 (5 ULg)
Full Text
Peer Reviewed
See detailCarbon monoxide (CO) and ethane (C2H6) trends from ground-based solar FTIR measurements at six European stations, comparison and sensitivity analysis with the EMEP model
Angelbratt, J.; Mellqvist, J.; Simpson, D. et al

in Atmospheric Chemistry and Physics (2011), 11(17), 9253--9269

Trends in the CO and C2H6 partial columns ~0–15 km) have been estimated from four European ground-based solar FTIR (Fourier Transform InfraRed) stations for the 1996–2006 time period. The CO trends from ... [more ▼]

Trends in the CO and C2H6 partial columns ~0–15 km) have been estimated from four European ground-based solar FTIR (Fourier Transform InfraRed) stations for the 1996–2006 time period. The CO trends from the four stations Jungfraujoch, Zugspitze, Harestua and Kiruna have been estimated to −0.45 ± 0.16% yr−1, −1.00 ± 0.24% yr−1, −0.62 ± 0.19 % yr−1 and −0.61 ± 0.16% yr−1, respectively. The corresponding trends for C2H6 are −1.51 ± 0.23% yr−1, −2.11 ± 0.30% yr−1, −1.09 ± 0.25% yr−1 and −1.14 ± 0.18% yr−1. All trends are presented with their 2-σ confidence intervals. To find possible reasons for the CO trends, the global-scale EMEP MSC-W chemical transport model has been used in a series of sensitivity scenarios. It is shown that the trends are consistent with the combination of a 20% decrease in the anthropogenic CO emissions seen in Europe and North America during the 1996–2006 period and a 20% increase in the anthropogenic CO emissions in East Asia, during the same time period. The possible impacts of CH4 and biogenic volatile organic compounds (BVOCs) are also considered. The European and global-scale EMEP models have been evaluated against the measured CO and C2H6 partial columns from Jungfraujoch, Zugspitze, Bremen, Harestua, Kiruna and Ny-Ålesund. The European model reproduces, on average the measurements at the different sites fairly well and within 10–22% deviation for CO and 14–31% deviation for C2H6. Their seasonal amplitude is captured within 6–35% and 9–124% for CO and C2H6, respectively. However, 61–98% of the CO and C2H6 partial columns in the European model are shown to arise from the boundary conditions, making the global-scale model a more suitable alternative when modeling these two species. In the evaluation of the global model the average partial columns for 2006 are shown to be within 1–9% and 37–50% of the measurements for CO and C2H6, respectively. The global model sensitivity for assumptions made in this paper is also analyzed. [less ▲]

Detailed reference viewed: 42 (4 ULg)
Full Text
Peer Reviewed
See detailFirst space-based derivation of the global atmospheric methanol emission fluxes
Stavrakou, T.; Guenther, A.; Razavi, A. et al

in Atmospheric Chemistry and Physics (2011), 11

Detailed reference viewed: 16 (4 ULg)
Full Text
Peer Reviewed
See detailValidation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)
Dupuy, Eric; Walker, K. A.; Kar, J. et al

in Atmospheric Chemistry and Physics (2009), 9(2), 287-343

This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and ... [more ▼]

This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45 60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about + 20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within +/- 10% (average values within +/- 6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (similar to 35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements. [less ▲]

Detailed reference viewed: 215 (23 ULg)
Full Text
Peer Reviewed
See detailValidation of version-4.61 methane and nitrous oxide observed by MIPAS
Payan, S.; Camy-Peyret, C.; Oelhaf, H. et al

in Atmospheric Chemistry and Physics (2009), 9(2), 413-442

The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In ... [more ▼]

The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements. [less ▲]

Detailed reference viewed: 57 (9 ULg)
Full Text
Peer Reviewed
See detailEvaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations.
Vigouroux, C.; De Mazière, M.; Demoulin, Philippe ULg et al

in Atmospheric Chemistry and Physics (2008), 362(8), 6865-6886

Detailed reference viewed: 55 (4 ULg)
Full Text
Peer Reviewed
See detailGeophysical validation of MIPAS-ENVISAT operational ozone data
Cortesi, U.; Lambert, J. C.; De Clercq, C. et al

in Atmospheric Chemistry and Physics (2007), 7(18), 4807-4867

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), on-board the European ENVIronmental SATellite (ENVISAT) launched on 1 March 2002, is a middle infrared Fourier Transform spectrometer ... [more ▼]

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), on-board the European ENVIronmental SATellite (ENVISAT) launched on 1 March 2002, is a middle infrared Fourier Transform spectrometer measuring the atmospheric emission spectrum in limb sounding geometry. The instrument is capable to retrieve the vertical distribution of temperature and trace gases, aiming at the study of climate and atmospheric chemistry and dynamics, and at applications to data assimilation and weather forecasting. MIPAS operated in its standard observation mode for approximately two years, from July 2002 to March 2004, with scans performed at nominal spectral resolution of 0.025 cm(-1) and covering the altitude range from the mesosphere to the upper troposphere with relatively high vertical resolution (about 3 km in the stratosphere). Only reduced spectral resolution measurements have been performed subsequently. MIPAS data were re-processed by ESA using updated versions of the Instrument Processing Facility (IPF v4.61 and v4.62) and provided a complete set of level-2 operational products (geo-located vertical profiles of temperature and volume mixing ratio of H2O, O-3, HNO3, CH4, N2O and NO2) with quasi continuous and global coverage in the period of MIPAS full spectral resolution mission. In this paper, we report a detailed description of the validation of MIPAS-ENVISAT operational ozone data, that was based on the comparison between MIPAS v4.61 (and, to a lesser extent, v4.62) O-3 VMR profiles and a comprehensive set of correlative data, including observations from ozone sondes, ground-based lidar, FTIR and microwave radiometers, remote-sensing and in situ instruments on-board stratospheric aircraft and balloons, concurrent satellite sensors and ozone fields assimilated by the European Center for Medium-range Weather Forecasting. A coordinated effort was carried out, using common criteria for the selection of individual validation data sets, and similar methods for the comparisons. This enabled merging the individual results from a variety of independent reference measurements of proven quality (i.e. well characterized error budget) into an overall evaluation of MIPAS O-3 data quality, having both statistical strength and the widest spatial and temporal coverage. Collocated measurements from ozone sondes and ground-based lidar and microwave radiometers of the Network for the Detection Atmospheric Composition Change (NDACC) were selected to carry out comparisons with time series of MIPAS O-3 partial columns and to identify groups of stations and time periods with a uniform pattern of ozone differences, that were subsequently used for a vertically resolved statistical analysis. The results of the comparison are classified according to synoptic and regional systems and to altitude intervals, showing a generally good agreement within the comparison error bars in the upper and middle stratosphere. Significant differences emerge in the lower stratosphere and are only partly explained by the larger contributions of horizontal and vertical smoothing differences and of collocation errors to the total uncertainty. Further results obtained from a purely statistical analysis of the same data set from NDACC ground-based lidar stations, as well as from additional ozone soundings at middle latitudes and from NDACC ground-based FTIR measurements, confirm the validity of MIPAS O-3 profiles down to the lower stratosphere, with evidence of larger discrepancies at the lowest altitudes. The validation against O-3 VMR profiles using collocated observations performed by other satellite sensors (SAGE II, POAM III, ODIN-SMR, ACE-FTS, HALOE, GOME) and ECMWF assimilated ozone fields leads to consistent results, that are to a great extent compatible with those obtained from the comparison with ground-based measurements. Excellent agreement in the full vertical range of the comparison is shown with respect to collocated ozone data from stratospheric aircraft and balloon instruments, that was mostly obtained in very good spatial and temporal coincidence with MIPAS scans. This might suggest that the larger differences observed in the upper troposphere and lowermost stratosphere with respect to collocated ground-based and satellite O-3 data are only partly due to a degradation of MIPAS data quality. They should be rather largely ascribed to the natural variability of these altitude regions and to other components of the comparison errors. By combining the results of this large number of validation data sets we derived a general assessment of MIPAS v4.61 and v4.62 ozone data quality. A clear indication of the validity of MIPAS O-3 vertical profiles is obtained for most of the stratosphere, where the mean relative difference with the individual correlative data sets is always lower than +/- 10%. Furthermore, these differences always fall within the combined systematic error (from 1 hPa to 50 hPa) and the standard deviation is fully consistent with the random error of the comparison (from 1 hPa to similar to 30-40 hPa). A degradation in the quality of the agreement is generally observed in the lower stratosphere and upper troposphere, with biases up to 25% at 100 hPa and standard deviation of the global mean differences up to three times larger than the combined random error in the range 50-100 hPa. The larger differences observed at the bottom end of MIPAS retrieved profiles can be associated, as already noticed, to the effects of stronger atmospheric gradients in the UTLS that are perceived differently by the various measurement techniques. However, further components that may degrade the results of the comparison at lower altitudes can be identified as potentially including cloud contamination, which is likely not to have been fully filtered using the current settings of the MIPAS cloud detection algorithm, and in the linear approximation of the forward model that was used for the a priori estimate of systematic error components. The latter, when affecting systematic contributions with a random variability over the spatial and temporal scales of global averages, might result in an underestimation of the random error of the comparison and add up to other error sources, such as the possible underestimates of the p and T error propagation based on the assumption of a 1 K and 2% uncertainties, respectively, on MIPAS temperature and pressure retrievals. At pressure lower than 1 hPa, only a small fraction of the selected validation data set provides correlative ozone data of adequate quality and it is difficult to derive quantitative conclusions about the performance of MIPAS O-3 retrieval for the topmost layers. [less ▲]

Detailed reference viewed: 63 (2 ULg)
See detailIntercomparisons of MIPAS operational N2O and HNO3 profiles with ground based FTIR data
Vigouroux, C.; De Mazière, M.; Wood, S. et al

Poster (2004, July)

Detailed reference viewed: 13 (1 ULg)
Full Text
See detailValidation of MIPAS N2O Profiles by Stratospherc Balloon, Aircraft and Ground Based Measurements
Camy-Peyret, C.; Dufour, G.; Payan, S. et al

Scientific conference (2004, May)

The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-bone, aircraft and ground-based correlative measurements. In particular the ... [more ▼]

The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-bone, aircraft and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As a companion to a similar paper on CH4 and in parallel to the contribution of the individual validation teams, the resent paper provides a synthesis of comparisons performed between MIPAS N2O profiles roduced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61) or by the IMK-FZK scientific processor and correlative measurements obtained from balloon and aircraft experiments as well as from ground-based instruments. [less ▲]

Detailed reference viewed: 31 (1 ULg)
Full Text
See detailGround-based FTIR measurements of O3- and climate-related gases in the free troposphere and lower stratosphere
De Mazière, M.; Barret, B.; Vigouroux, C. et al

in Zerefos, C. S. (Ed.) Proceedings Quadrennial Ozone Symposium (2004)

In the frame of the EC project UFTIR (Time series of Upper Free Troposphere observations from a European ground-based FTIR network), a common strategy for an optimal determination of the chemical ... [more ▼]

In the frame of the EC project UFTIR (Time series of Upper Free Troposphere observations from a European ground-based FTIR network), a common strategy for an optimal determination of the chemical composition in the free troposphere and lower stratosphere with ground-based Fourier-transform infrared (FTIR) spectrometers is being developed. The project focuses on 6 target species that are O3, CO, CH4, N2O, C2H6 and CHClF2 (HCFC-22). The strategy consists in selecting the most appropriate parameters to retrieve vertical concentration profiles from solar FTIR spectra. Among the important parameters are the spectral microwindows: they have been optimised to maximise the information content and to minimize the influence of poorly known spectroscopic data and interfering species. [less ▲]

Detailed reference viewed: 20 (1 ULg)