References of "Viatour, Patrick"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe repressing function of the oncoprotein BCL-3 requires CtBP while its polyubiquitination and degradation involve the E3 ligase TBLR1
Keutgens, Aurore ULg; Shostak, Kateryna ULg; Close, Pierre ULg et al

in Molecular & Cellular Biology (2010), 30

The nuclear and oncogenic BCL-3 protein activates or represses gene transcription when bound to NF-kB proteins p50 and p52, yet the molecules that specifically interact with BCL-3 and drive BCL-3-mediated ... [more ▼]

The nuclear and oncogenic BCL-3 protein activates or represses gene transcription when bound to NF-kB proteins p50 and p52, yet the molecules that specifically interact with BCL-3 and drive BCL-3-mediated effects on gene expression remain largely uncharacterized. Moreover, GSK3-mediated phosphorylation of BCL-3 triggers its degradation through the proteasome, but the proteins involved in this degradative pathway are poorly characterized. Biochemical purification of interacting partners of BCL-3 led to the identification of CtBP as a molecule required for the ability of BCL-3 to repress gene transcription. CtBP is also required for the oncogenic potential of BCL-3 and for its ability to inhibit UV-mediated cell apoptosis in keratinocytes. We also defined the E3 ligase TBLR1 as a protein involved in BCL-3 degradation through a GSK3-independent pathway. Thus, our data demonstrate that the LSD1/CtBP complex is required for the repressing abilities of an oncogenic IkB protein, and they establish a functional link between the E3 ligase TBLR1 and NF-kB. [less ▲]

Detailed reference viewed: 63 (23 ULg)
Full Text
Peer Reviewed
See detailBCL-3 degradation involves its polyubiquitination through a FBW7-independent pathway and its binding to the proteasome subunit PSMB1.
Keutgens, Aurore ULg; Zhang-Shao, Xin ULg; Shostak, Kateryna ULg et al

in Journal of Biological Chemistry (2010), 285(33), 2583125840

The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the ... [more ▼]

The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the mechanisms underlying its degradation remain poorly understood. Yeast-two-hybrid analysis led to the identification of the proteasome subunit PSMB1 as a BCL-3-associated protein. The binding of BCL-3 to PSMB1 is required for its degradation through the proteasome. Indeed, PSMB1-depleted cells are defective in degrading polyubiquitinated BCL-3. The N-terminal part of BCL-3 includes lysines 13 and 26 required for the K48-linked polyubiquitination of BCL-3. Moreover, the E3 ligase FBW7 known to polyubiquitinate a variety of substrates phosphorylated by GSK3 is dispensable for BCL-3 degradation. Thus, our data defined an unique motif of BCL-3 that is needed for its recruitment to the proteasome and identified PSMB1 as a key protein required for the proteasome-mediated degradation of a nuclear and oncogenic IkappaB protein. [less ▲]

Detailed reference viewed: 77 (36 ULg)
Full Text
Peer Reviewed
See detailMatrix Metalloproteinase-9 gene induction by a truncated oncogenic NF-κB2 protein involves the recruitment of MLL1 and MLL2 H3K4 histone methyltransferase complexes.
Robert, Isabelle ULg; Aussems, Marie ULg; Keutgens, Aurore ULg et al

in Oncogene (2009), 28(13), 1626-1638

Constitutive nuclear factor (NF)-kappaB activation in haematological malignancies is caused in several cases by loss of function mutations within the coding sequence of NF-kappaB inhibitory molecules such ... [more ▼]

Constitutive nuclear factor (NF)-kappaB activation in haematological malignancies is caused in several cases by loss of function mutations within the coding sequence of NF-kappaB inhibitory molecules such as IkappaBalpha or p100. Hut-78, a truncated form of p100, constitutively generates p52 and contributes to the development of T-cell lymphomas but the molecular mechanism underlying this oncogenic potential remains unclear. We show here that MMP9 gene expression is induced through the alternative NF-kappaB-activating pathway in fibroblasts and also on Hut-78 or p52 overexpression in fibroblasts as well as in lymphoma cells. p52 is critical for Hut-78-mediated MMP9 gene induction as a Hut-78 mutant as well as other truncated NF-kappaB2 proteins that are not processed into p52 failed to induce the expression of this metalloproteinase. Conversely, MMP9 gene expression is impaired in p52-depleted HUT-78 cells. Interestingly, MLL1 and MLL2 H3K4 methyltransferase complexes are tethered by p52 on the MMP9 but not on the IkappaBalpha promoter, and the H3K4 trimethyltransferase activity recruited on the MMP9 promoter is impaired in p52-depleted HUT-78 cells. Moreover, MLL1 and MLL2 are associated with Hut-78 in a native chromatin-enriched extract. Thus, we identified a molecular mechanism by which the recruitment of a H3K4 histone methyltransferase complex on the promoter of a NF-kappaB-dependent gene induces its expression and potentially the invasive potential of lymphoma cells harbouring constitutive activity of the alternative NF-kappaB-activating pathway. [less ▲]

Detailed reference viewed: 121 (40 ULg)
Full Text
Peer Reviewed
See detailDeregulated NF-kappa B activity in haematological malignancies
Keutgens, Aurore ULg; Robert, Isabelle ULg; Viatour, Patrick ULg et al

in Biochemical Pharmacology (2006), 72(9), 1069-1080

The NF-kappa B family of transcription factors plays key roles in the control of cell proliferation and apoptosis. Constitutive NF-kappa B activation is a common feature for most haematological ... [more ▼]

The NF-kappa B family of transcription factors plays key roles in the control of cell proliferation and apoptosis. Constitutive NF-kappa B activation is a common feature for most haematological malignancies and is therefore believed to be a crucial event for enhanced proliferation and survival of these malignant cells. In this review, we will describe the molecular mechanisms underlying NF-kappa B deregulation in haematological malignancies and will highlight what is still unclear in this field, 20 years after the discovery of this transcription factor. (c) 2006 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 30 (7 ULg)
Full Text
Peer Reviewed
See detailPhosphorylation of NF-kappa B and I kappa B proteins: implications in cancer and inflammation
Viatour, Patrick ULg; Merville, Marie-Paule ULg; Bours, Vincent ULg et al

in Trends in Biochemical Sciences (2005), 30(1), 43-52

Nuclear factor-kappaB (NF-kappaB) is a transcription factor that has crucial roles in inflammation, immunity, cell proliferation and apoptosis. Activation of NF-kappaB mainly occurs via IkappaB kinase ... [more ▼]

Nuclear factor-kappaB (NF-kappaB) is a transcription factor that has crucial roles in inflammation, immunity, cell proliferation and apoptosis. Activation of NF-kappaB mainly occurs via IkappaB kinase (IKK)-mediated phosphorylation of inhibitory molecules, including IkappaBalpha. Optimal induction of NF-kappaB target genes also requires phosphorylation of NF-kappaB proteins, such as p65, within their transactivation domain by a variety of kinases in response to distinct stimuli. Whether, and how, phosphorylation modulates the function of other NF-kappaB and IkappaB proteins, such as B-cell lymphoma 3, remains unclear. The identification and characterization of all the kinases known to phosphorylate NF-kappaB and IkappaB proteins are described here. Because deregulation of NF-kappaB and IkappaB phosphorylations is a hallmark of chronic inflammatory diseases and cancer, newly designed drugs targeting these constitutively activated signalling pathways represent promising therapeutic tools. [less ▲]

Detailed reference viewed: 36 (8 ULg)
Full Text
Peer Reviewed
See detailProtein phosphorylation as a key mechanism for the regulation of BCL-3 activity
Viatour, Patrick ULg; Merville, Marie-Paule ULg; Bours, Vincent ULg et al

in Cell Cycle (Georgetown, Tex.) (2004), 3(12), 1498-1501

Constitutive NF-kappaB activation, a hallmark of many human cancers, upregulates anti-apoptotic gene expression and therefore disrupts the balance between apoptosis and proliferation. In some lymphomas ... [more ▼]

Constitutive NF-kappaB activation, a hallmark of many human cancers, upregulates anti-apoptotic gene expression and therefore disrupts the balance between apoptosis and proliferation. In some lymphomas, this constitutive NF-kappaB activity is the result of point mutations or translocations of the genes coding for NF-kappaB inhibitors, namely IkappaBalpha or p100. The BCL-3 protein is another member of the IkappaB family and is overexpressed in a subset of human B-cell chronic lymphocytic leukemias because of a chromosomal translocation. This oncoprotein is phosphorylated by multiple kinases including GSK3 and this phosphorylation regulates BCL-3 function by modulating its oncogenic potential and by regulating the expression of a subset of its target genes. Therefore, deciphering the NF-kappaB/IkappaB protein phosphorylations is critical in order to better understand the molecular mechanisms of NF-kappaB-mediated oncogenesis. [less ▲]

Detailed reference viewed: 22 (1 ULg)
Full Text
Peer Reviewed
See detailGSK3-Mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity
Viatour, Patrick ULg; Dejardin, Emmanuel ULg; Warnier, Michael et al

in Molecular Cell (2004), 16(1), 35-45

The oncoprotein BCL-3 is a nuclear transcription factor that activates NF-kappaB target genes through formation of heterocomplexes with p50 or p52. BCL-3 is phosphorylated in vivo, but specific BCL-3 ... [more ▼]

The oncoprotein BCL-3 is a nuclear transcription factor that activates NF-kappaB target genes through formation of heterocomplexes with p50 or p52. BCL-3 is phosphorylated in vivo, but specific BCL-3 kinases have not been identified so far. In this report, we show that BCL-3 is a substrate for the protein kinase GSK3 and that GSK3-mediated BCL-3 phosphorylation, which is inhibited by Akt activation, targets its degradation through the proteasome pathway. This phosphorylation modulates its association with HDAC1, -3, and -6 and attenuates its oncogenicity by selectively controlling the expression of a subset of newly identified target genes such as SLPI and CxcI1. Our results therefore suggest that constitutive BCL-3 phosphorylation by GSK3 regulates BCL-3 turnover and transcriptional activity. [less ▲]

Detailed reference viewed: 35 (11 ULg)
Full Text
Peer Reviewed
See detailCytoplasmic I kappa B alpha increases NF-kappa B-independent transcription through binding to histone deacetylase (HDAC) 1 and HDAC3
Viatour, Patrick ULg; Legrand-Poels, Sylvie; van Lint, Carine et al

in Journal of Biological Chemistry (2003), 278(47), 46541-46548

IkappaBalpha is an inhibitory molecule that sequesters NF-kappaB dimers in the cytoplasm of unstimulated cells. Upon stimulation, NF-kappaB moves to the nucleus and induces the expression of a variety of ... [more ▼]

IkappaBalpha is an inhibitory molecule that sequesters NF-kappaB dimers in the cytoplasm of unstimulated cells. Upon stimulation, NF-kappaB moves to the nucleus and induces the expression of a variety of genes including IkappaBalpha. This newly synthesized IkappaBalpha also translocates to the nucleus, removes activated NF-kappaB from its target genes, and brings it back to the cytoplasm to terminate the phase of NF-kappaB activation. We show here that IkappaBalpha enhances the transactivation potential of several homeodomain-containing proteins such as HOXB7 and Pit-1 through a NF-kappaB-independent association with histone deacetylase (HDAC) 1 and HDAC3 but not with HDAC2, -4, -5, and -6. IkappaBalpha bound both HDAC proteins through its ankyrin repeats, and this interaction was disrupted by p65. Immunofluorescence experiments demonstrated further that IkappaBalpha acts by partially redirecting HDAC3 to the cytoplasm. At the same time, an IkappaBalpha mutant, which lacked a functional nuclear localization sequence, interacted very efficiently with HDAC1 and -3 and intensively enhanced the transactivation potential of Pit-1. Our results support the hypothesis that the NF-kappaB inhibitor IkappaBalpha regulates the transcriptional activity of homeodomain-containing proteins positively through cytoplasmic sequestration of HDAC1 and HDAC3, a mechanism that would assign a new and unexpected role to IkappaBalpha. [less ▲]

Detailed reference viewed: 18 (4 ULg)
Full Text
Peer Reviewed
See detailNF-kappa B2/p100 induces Bcl-2 expression
Viatour, Patrick ULg; Bentires-Alj, Mohamed; Chariot, Alain ULg et al

in Leukemia (2003), 17(7), 1349-1356

The NF-kappaB2/p100 and bcl-3 genes are involved in chromosomal translocations described in chronic lymphocytic leukemias (CLL) and non-Hodgkin's lymphomas, and nuclear factor kappaB (NF-kappaB) protects ... [more ▼]

The NF-kappaB2/p100 and bcl-3 genes are involved in chromosomal translocations described in chronic lymphocytic leukemias (CLL) and non-Hodgkin's lymphomas, and nuclear factor kappaB (NF-kappaB) protects cancer cells against apoptosis. Therefore, we investigated whether this transcription factor could modulate the expression of the Bcl-2 antiapoptotic protein. Bcl-2 promoter analysis showed multiple putative NF-kappaB binding sites. Transfection assays of bcl-2 promoter constructs in HCT116 cells showed that NF-kappaB can indeed transactivate bcl-2. We identified a kappaB site located at position -180 that can only be bound and transactivated by p50 or p52 homodimers. As p50 and p52 homodimers are devoid of any transactivating domains, we showed that they can transactivate the bcl-2 promoter through association with Bcl-3. We also observed that stable overexpression of p100 and its processed product p52 can induce endogenous Bcl-2 expression in MCF7AZ breast cancer cells. Finally, we demonstrated that, in breast cancer and leukemic cells ( CLL), high NF-kappaB2/p100 expression was associated with high Bcl-2 expression. Our data suggest that Bcl-2 could be an in vivo target gene for NF-kappaB2/p100. [less ▲]

Detailed reference viewed: 42 (2 ULg)
Peer Reviewed
See detailInhibition of the Nf-Kappa B Transcription Factor Increases Bax Expression in Cancer Cell Lines
Bentires-Alj, M.; Dejardin, Emmanuel ULg; Viatour, Patrick ULg et al

in Oncogene (2001), 20(22), 2805-13

The NF-kappa B transcription factor has been shown to inhibit apoptosis in several experimental systems. We therefore investigated whether the expression of the Bax proapoptotic protein could be ... [more ▼]

The NF-kappa B transcription factor has been shown to inhibit apoptosis in several experimental systems. We therefore investigated whether the expression of the Bax proapoptotic protein could be influenced by NF-kappa B activity. Increased Bax protein expression was detected in HCT116, OVCAR-3 and MCF7 cells stably expressing a mutated unresponsive I kappa B-alpha inhibitory protein that blocks NF-kappa B activity. Northern blots showed that bax mRNA expression was increased as a consequence of mutated I kappa B-alpha expression in HCT116 cells. A careful examination of the human bax gene promoter sequence showed three putative binding sites for NF-kappa B, and the kappa B2 site at position -687 could indeed bind NF-kappa B complexes in vitro. Transient transfection of a bax promoter luciferase construct in HCT116 cells showed that NF-kappa B proteins could partially inhibit the transactivation of the bax promoter by p53. Mutations or deletions of the kappa B sites, including kappa B2, indicated that this NF-kappa B-dependent inhibitory effect did not require NF-kappa B DNA-binding, and was thus an indirect effect. However, cotransfection of expression vectors for several known cofactors failed to identify a competition between p53 and NF-kappa B for a transcription coactivator. Our findings thus demonstrate for the first time that NF-kappa B regulates, through an indirect pathway, the bax gene expression. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Peer Reviewed
See detailNuclear Factor-Kappa B, Cancer, and Apoptosis
Bours, Vincent ULg; Bentires-Alj, M.; Hellin, A. C. et al

in Biochemical Pharmacology (2000), 60(8), 1085-9

The role of nuclear factor (NF)-kappa B in the regulation of apoptosis in normal and cancer cells has been extensively studied in recent years. Constitutive NF-kappa B activity in B lymphocytes as well as ... [more ▼]

The role of nuclear factor (NF)-kappa B in the regulation of apoptosis in normal and cancer cells has been extensively studied in recent years. Constitutive NF-kappa B activity in B lymphocytes as well as in Hodgkin's disease and breast cancer cells protects these cells against apoptosis. It has also been reported that NF-kappa B activation by tumor necrosis factor (TNF)-alpha, chemotherapeutic drugs, or ionizing radiations can protect several cell types against apoptosis, suggesting that NF-kappa B could participate in resistance to cancer treatment. These observations were explained by the regulation of antiapoptotic gene expression by NF-kappa B. However, in our experience, inhibition of NF-kappa B activity in several cancer cell lines has a very variable effect on cell mortality, depending on the cell type, the stimulus, and the level of NF-kappa B inhibition. Moreover, in some experimental systems, NF-kappa B activation is required for the onset of apoptosis. Therefore, it is likely that the NF-kappa B antiapoptotic role in response to chemotherapy is cell type- and signal-dependent and that the level of NF-kappa B inhibition is important. These issues will have to be carefully investigated before considering NF-kappa B as a target for genetic or pharmacological anticancer therapies. [less ▲]

Detailed reference viewed: 16 (7 ULg)