References of "Vertruyen, Bénédicte"
     in
Bookmark and Share    
See detailUp-scalable spray-drying synthesis of Na2Ti3O7
Piffet, Caroline ULg; Vertruyen, Bénédicte ULg; Mahmoud, Abdelfattah ULg et al

Poster (2017, September 07)

Detailed reference viewed: 16 (0 ULg)
Full Text
Peer Reviewed
See detailHydrothermal synthesis in presence of carbon black: Particle-size reduction of iron hydroxyl phosphate hydrate for Li-ion battery
Karegeya, Claude ULg; Mahmoud, Abdelfattah ULg; Cloots, Rudi ULg et al

in Electrochimica Acta (2017), 250

Iron hydroxyl phosphate hydrate Fe1.19(PO4)(OH)0.57(H2O)0.43 (FPHH) was obtained by hydrothermal synthesis at 220 °C for 6 hours. Addition of carbon black to the solution before hydrothermal treatment led ... [more ▼]

Iron hydroxyl phosphate hydrate Fe1.19(PO4)(OH)0.57(H2O)0.43 (FPHH) was obtained by hydrothermal synthesis at 220 °C for 6 hours. Addition of carbon black to the solution before hydrothermal treatment led to a reduction of the FPHH particle size from ∼10 μm in the carbon-free compound to ∼300–500 nm in the FPHH-10%C and FPHH-20%C composite with a good dispersion of conducting carbon black. X-ray diffraction, 57Fe Mossbauer spectroscopy and a thermal decomposition study showed that the addition of carbon black did not interfere with the formation of the FPHH phase. Thanks to its favorable microstructural characteristics, the FPHH-10%C and FPHH-20%C material exhibited good performance as positive electrode for Li-ion battery, with high initial discharge capacities of 150, 128 and 112 mAh g−1 at 0.25C, 0.5C and 1C rates respectively and 99% capacity retention after 150 cycles at 2C. These results show that addition of solid carbon directly into the solution prior to hydrothermal treatment is a simple and effective way to reduce particle size and also to improve electronic conductivity by dispersing conductive carbon around the active material. This approach is easily transferable to other compounds prepared by hydrothermal synthesis, in order to control particle size while retaining the advantage of crystallization at low temperature. [less ▲]

Detailed reference viewed: 21 (4 ULg)
Full Text
Peer Reviewed
See detailSpray-drying as a tool to disperse conductive carbon inside Na2FePO4F particles by addition of carbon black or carbon nanotubes to the precursor solution
Mahmoud, Abdelfattah ULg; Caes, Sebastien; Brisbois, Magali et al

in Journal of Solid State Electrochemistry (2017)

In this work, Na2FePO4F-carbon composite powders were prepared by spray-drying a solution of inorganic precursors with 10 and 20 wt% added carbon black (CB) or carbon nanotubes (CNTs). In order to compare ... [more ▼]

In this work, Na2FePO4F-carbon composite powders were prepared by spray-drying a solution of inorganic precursors with 10 and 20 wt% added carbon black (CB) or carbon nanotubes (CNTs). In order to compare the effect of CB and CNTwhen added to the precursor solutions, the structural, electrochemical, and morphological properties of the synthesized Na2FePO4F-xCB and Na2FePO4F-xCNT samples were systematically investigated. In both cases, X-ray diffraction shows that calcination at 600 °C in argon leads to the formation of Na2FePO4F as the major inorganic phase. 57Fe Mössbauer spectroscopy was used as complementary technique to probe the oxidation states, local environment, and identify the composition of the iron-containing phases. The electrochemical performance is markedly better in the case of Na2FePO4F-CNT (20 wt%), with specific capacities of about 100 mAh/g (Na2FePO4F-CNT) at C/4 rate vs. 50 mAh/g for Na2FePO4F-CB (20 wt%). SEM characterization of Na2FePO4F-CB particles revealed different particle morphologies for the Na2FePO4F-CNT and Na2FePO4F-CB powders. The carbon-poor surface observed for Na2FePO4FCB could be due to a slow diffusion of carbon in the droplets during drying. On the contrary, Na2FePO4F-CNT shows a better CNT dispersion inside and at the surface of the NFPF particles that improves the electrochemical performance. [less ▲]

Detailed reference viewed: 24 (8 ULg)
Full Text
Peer Reviewed
See detailOne-step hydrothermal synthesis and electrochemical performance of sodium-manganese-iron phosphate as cathode material for Li-ion batteries
Karegeya, Claude ULg; Mahmoud, Abdelfattah ULg; Vertruyen, Bénédicte ULg et al

in Journal of Solid State Chemistry (2017), 253

The sodium-manganese-iron phosphate Na2Mn1.5Fe1.5(PO4)3 (NMFP) with alluaudite structure was obtained by a one-step hydrothermal synthesis route. The physical properties and structure of this material ... [more ▼]

The sodium-manganese-iron phosphate Na2Mn1.5Fe1.5(PO4)3 (NMFP) with alluaudite structure was obtained by a one-step hydrothermal synthesis route. The physical properties and structure of this material were obtained through XRD and Mössbauer analyses. X-ray diffraction Rietveld refinements confirm a cationic distribution of Na+ and presence of vacancies in A(2)’, Na+ and small amounts of Mn2+ in A(1), Mn2+ in M(1) , 0.5 Mn2+ and Fe cations (Mn2+,Fe2+ and Fe3+) in M(2), leading to the structural formula Na2Mn(Mn0.5Fe1.5)(PO4)3. The particles morphology was investigated by SEM. Several reactions with different hydrothermal reaction times were attempted to design a suitable synthesis protocol of NMFP compound. The time of reaction was varied from 6 to 48 hours at 220°C. The pure phase of NMFP particles was firstly obtained when the hydrothermal reaction of NMFP precursors mixture was maintained at 220°C for 6 hours. When the reaction time was increased from 6 to 12, 24 and 48 hours, the dandelion structure was destroyed in favor of NMFP micro-rods. The combination of NMFP (NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H) structure refinement and Mössbauer characterizations shows that the increase of the reaction time leads to the progressive increment of Fe(III) and the decrease of the crystal size. The electrochemical tests indicated that NMFP is a 3 V sodium intercalating cathode. The comparison of the discharge capacity evolution of studied NMFP electrode materials at C/5 current density shows different capacities of 48, 40, 34 and 34 mAhg-1 for NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H respectively. Interestingly, all samples show excellent capacity retention of about 99 % during 50 cycles. [less ▲]

Detailed reference viewed: 22 (0 ULg)
Full Text
Peer Reviewed
See detailPreferred Orientation Contribution to the Anisotropic Normal State Resistivity in Superconducting Melt-Cast Processed Bi2Sr2CaCu2O8+δ
Dellicour, Aline ULg; Vertruyen, Bénédicte ULg; Rikel, M O et al

in Materials (2017), 10

We describe how the contribution of crystallographic texture to the anisotropy of the resistivity of polycrystalline samples can be estimated by averaging over crystallographic orientations through a ... [more ▼]

We describe how the contribution of crystallographic texture to the anisotropy of the resistivity of polycrystalline samples can be estimated by averaging over crystallographic orientations through a geometric mean approach. The calculation takes into account the orientation distribution refined from neutron diffraction data and literature values for the single crystal resistivity tensor. The example discussed here is a melt-cast processed Bi2Sr2CaCu2O8+ (Bi-2212) polycrystalline tube in which the main texture component is a <010> fiber texture with relatively low texture strength. Experimentally-measured resistivities along the longitudinal, radial, and tangential directions of the Bi-2212 tube were compared to calculated values and found to be of the same order of magnitude. Calculations for this example and additional simulations for various texture strengths and single crystal resistivity anisotropies confirm that in the case of highly anisotropic phases such as Bi-2212, even low texture strengths have a significant effect on the anisotropy of the resistivity in polycrystalline samples. [less ▲]

Detailed reference viewed: 16 (0 ULg)
Full Text
See detailSpray Drying-­Assisted Synthesis of Na2FePO4F/CB and Na2FePO4F/CNT Composite Cathodes for Lithium Ion Battery
Mahmoud, Abdelfattah ULg; Brisbois; Caes, sebastien et al

Conference (2017, May 08)

Fluorophosphates are considered among the most interesting series of cathode materials for Li/Na-ion batteries. Na2FePO4F, with layered structure and two-dimensional pathways for facile Na+/Li+ transport ... [more ▼]

Fluorophosphates are considered among the most interesting series of cathode materials for Li/Na-ion batteries. Na2FePO4F, with layered structure and two-dimensional pathways for facile Na+/Li+ transport [1], exhibits minimal structural changes (3.7%) upon reduction/oxidation. The average working voltage is 3.3 V versus Li+/Li. However, one of the key drawbacks of Na2FePO4F electrodes is their low intrinsic electronic conductivity. In this work, we report on the synthesis of Na2FePO4F by spray-drying, a technique which is easily scaled-up from the lab- to the industrial-scale and ensures a good homogeneity of all precursors. We are investigating the replacement of the grinding step by the addition of conductive carbon (carbon black and carbon nanotubes) to the solution containing the inorganic precursors of the Na2FePO4F phase in order to prepare Na2FePO4F/CB and Na2FePO4F/CNT with different ratios of CB and CNT (10 and 20%) and enhanced conductivity. The electrochemical performance shows that the addition of CNT improves remarkably the capacity of the NFPF electrode material thanks to better CNT dispersion inside and at the surface of the NFPF particles which enhances the electronic conductivity. Acknowledgements: The authors thank the Walloon Region for support under the “PE Plan Marshall 2.vert” program (BATWAL -1318146). A. Mahmoud is grateful to the Walloon region for a Beware Fellowship Academia 2015-1, RESIBAT n° 1510399. References [1] M. Brisbois, S. Caes, M-T. Sougrati, B. Vertruyen, A. Schrijnemakers, R. Cloots, N. Eshraghi, R-P. Hermann, A. Mahmoud, F. Boschini, Solar Energy Materials & Solar Cells 148 (2015) 11-19. [less ▲]

Detailed reference viewed: 67 (8 ULg)
See detailSynthesis of hierarchical N-doped porous carbon structure/nanospheres Fe2O3 composites and its application in lithium-ion battery as lithium-ion anodes
Alkarmo, Walid ULg; Ouhib, Farid ULg; Aqil, Abdelhafid ULg et al

Poster (2017, May 04)

Nitrogen-doped porous carbons are of special interest, because their unique physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, and ... [more ▼]

Nitrogen-doped porous carbons are of special interest, because their unique physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, and are thus very important for applications in the fields of catalysis, environment techniques and energy generation and storage. Moreover, nitrogen-doping can be further amplified in a porous structure that bears a high surface area to increases their materials performance in electrochemical devices, such as double layer capacitors and lithium-ion batteries. In addition, nitrogen-doping can enhance the lithium insertion, between the nitrogen-doped carbon material and lithium. And it can create a large number of defects in the porous configuration and offer more active sites for lithium insertion. Toward this goal, a hierarchically structured macro- and mesoporous N-doped carbon with dispersed Fe2O3 nanoparticles (NDC@Fe2O3) is prepared by thermal treatment of a novel composite composed by PMMA particles decorated by graphene oxide (GO), PPy and iron salts. The NDC@Fe2O3 composite exhibited high surface area with a hierarchical pores structure. Integrated as a lithium ion battery anode, NDC@Fe2O3 exhibited high reversible capacity of 930 mA h/g over 200 cycles. The combination of Fe2O3 nanoparticles with nitrogen-doped porous carbons to form hybrid anode has been an efficient way to maintain the electronic integrity of the whole electrode since the carbon acts as a buffer layer to accommodate the volume variation and to provide multidimensional electron transport pathways during the charge/discharge process. [less ▲]

Detailed reference viewed: 89 (9 ULg)
Peer Reviewed
See detailUltrasonic spray coating of electrochromic nanomaterials
Maho, Anthony ULg; Manceriu, Laura ULg; Colson, Pierre ULg et al

Conference (2017, May)

Detailed reference viewed: 24 (3 ULg)
Full Text
Peer Reviewed
See detailSodium vanadium (III) fluorophosphate/carbon nanotubes composite (NVPF/CNT) prepared by spray-drying: good electrochemical performance thanks to well-dispersed CNT network within NVPF particles
Eshraghi, Nicolas ULg; Caes, Sebastien; Mahmoud, Abdelfattah ULg et al

in Electrochimica Acta (2017), 228

We successfully prepared NASICON-type Na3V2(PO4)2F3 (NVPF) and a Na3V2(PO4)2F3/carbon nanotubes (CNT) composite by spray-drying followed by heat treatment in argon for 2 hours at 600 °C. The addition of ... [more ▼]

We successfully prepared NASICON-type Na3V2(PO4)2F3 (NVPF) and a Na3V2(PO4)2F3/carbon nanotubes (CNT) composite by spray-drying followed by heat treatment in argon for 2 hours at 600 °C. The addition of CNT in the spray-drying solution creates a CNT network within the NVPF particles. After grinding, the smaller NVPF particles remain linked by CNT. Thanks to this conducting network, the composite powder displays competitive electrochemical performance when cycled against lithium in hybrid-ion batteries (2–4.6 V vs. Li+/Li) with specific capacities of 125 mAh.g−1 at C/10, 103 mAh.g−1 at 1C and 91 mAh.g−1 at 4C, together with 97.5% capacity retention at 1C over 100 cycles with coulombic efficiency of 99.4%. These results demonstrate that sodium vanadium (III) fluorophosphate electrode material can be obtained in a time-efficient way using the easily up-scalable spray-drying method. [less ▲]

Detailed reference viewed: 50 (15 ULg)
Full Text
Peer Reviewed
See detailOn the Habitability of Desert Varnish: a Combined Study by Micro-Raman Spectroscopy, X-Ray Diffraction and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry
Malherbe, Cédric ULg; Hutchinson, Ian; Ingley, Richard et al

in Astrobiology (2017)

In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars, searching for evidence of past and present life. In preparation for these missions, terrestrial analogue samples of rock ... [more ▼]

In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars, searching for evidence of past and present life. In preparation for these missions, terrestrial analogue samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analogue samples. During the formation of desert varnishes (which takes many hundreds of years) organic matter is incorporated and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-rays diffraction, Raman spectroscopy, elemental analysis and pyrolysis-gas chromatography-mass spectrometry) were used to interrogate samples of desert varnish and to describe their capacity to sustain life under extreme scenario. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described using an identical set of samples. XRD and Raman spectroscopy measurements were used to non-destructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman active biomarker. The content and the nature of the organic material in the samples was further investigated using elemental analysis and methylated Py-GC-MS and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the bio-geochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested. [less ▲]

Detailed reference viewed: 126 (10 ULg)
Full Text
Peer Reviewed
See detailComparison of Indium Tin Oxide and Indium Tungsten Oxide as Transparent Conductive Substrates for WO3-Based Electrochromic Devices
Maho, Anthony ULg; Nicolay, Sylvain; Manceriu, Laura ULg et al

in Journal of the Electrochemical Society (2017), 164(2), 25-31

Detailed reference viewed: 51 (21 ULg)
Full Text
See detailHydrothermal synthesis of tailored new  promising phosphate particles for lithium and sodium ion batteries
Karegeya, Claude ULg; Mahmoud, Abdelfattah ULg; Sougrati Tahar, Moulay et al

Conference (2016, December 16)

The rechargeable Li-ion batteries dominate the currently used storage systems due to their unrivalled electrochemical properties. However, this technology needs more improvements to meet coast, high ... [more ▼]

The rechargeable Li-ion batteries dominate the currently used storage systems due to their unrivalled electrochemical properties. However, this technology needs more improvements to meet coast, high capacity, safety and environmental requirements. Current researches on Li-ion batteries are focusing on the development of safe and cheap electrode compounds with good electrochemical performance. Iron phosphate-based electrodes have attracted increasing interest due to their environmental compatibility, low cost and its promising electrochemical performance as positive electrode materials in LIB. In this work, we report the electrochemical properties of Fex(PO4)(OH)y.zH2O) cathode material obtained by one-pot hydrothermal synthesis route, a technique which produces the particles with suitable properties for electrode application. We show that the addition of a conducting carbon (carbon black or carbon nanotubes) into the solution has a strong influence on reducing the size and tailoring morphology of material particles. These are among the main factors to enhance the electrochemical performance of the material. Combined with electrochemical and XRD studies, operando Mössbauer analysis shows that Fex(PO4)(OH)y.zH2O) undergoes a reversible reduction/oxidation during lithium intercalation/ deintercalation processes. Acknowledgments This work was supported by the Walloon Region through the BATWAL project [PE Plan Marshall 2.vert]; and the Beware Fellowship Academia [2015-1, RESIBAT n° 1510399]. [less ▲]

Detailed reference viewed: 76 (15 ULg)
Full Text
Peer Reviewed
See detailPolyhydroxyurethane hydrogels: synthesis and characterizations
Gennen, Sandro ULg; Grignard, Bruno ULg; Thomassin, Jean-Michel ULg et al

in European Polymer Journal (2016), 84

Hydrogels based on polyurethane (PU) are promising (bio-) materials because of their bio- compatibility, biodegradation and excellent mechanical properties. In this publication, polyurethane hydrogels ... [more ▼]

Hydrogels based on polyurethane (PU) are promising (bio-) materials because of their bio- compatibility, biodegradation and excellent mechanical properties. In this publication, polyurethane hydrogels were produced for the first time by a non-isocyanate route by solvent-free step-growth copolymerization between a CO2-sourced hydrophilic polyethy- lene glycol bi-cyclic carbonate with diamines in the presence of a cross-linker. Kinetic of poly(hydroxyurethane) (PHU) synthesis was monitored by ATR-IR and the chemical cross-linking was confirmed by rheology and gel contents measurements. Hydrogels were obtained by immersion of PHUs in water and the influence of the diamine/cross-linker ratio and the nature of diamine on the water swelling and compression properties (compression modulus, strain and stress at break) of PHU hydrogels was evaluated. Additionally, the compression properties of the hydrogels were improved by the addition of Montmorillonite as nanofiller in the PHU formulation. This work opens new application fields for CO2-sourced PHUs. [less ▲]

Detailed reference viewed: 72 (22 ULg)
See detailDesign and synthesis of Fe2O3 nanoparticles/N-doped porous carbon structures as high performance electrode for lithium ion battery
Alkarmo, Walid ULg; Ouhib, Farid ULg; Aqil, Abdelhafid ULg et al

Poster (2016, October 13)

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous ... [more ▼]

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous frameworks have emerged as attractive materials for various electrochemical energy storage/conversion devices, including Li-ion batteries (LIBs), Li−S batteries, supercapacitors and fuel cells. In this context, a hierarchically structured macro- and mesoporous N-doped carbon with dispersed Fe2O3 nanoparticles (NDC@Fe2O3) is prepared by thermal treatment of a novel composite composed by PMMA particles decorated by graphene oxide (GO), PPy and iron salts. The NDC@Fe2O3 composite exhibited high surface area with a hierarchical pores structure. The combination of Fe2O3 nanoparticles with porous carbon to form hybrid anode has been an efficient way to maintain the electronic integrity of the whole electrode since the carbon acts as a buffer layer to accommodate the volume variation and to provide multidimensional electron transport pathways during the charge/discharge process. [less ▲]

Detailed reference viewed: 173 (15 ULg)
See detailSynthesis and characterization of non-isocyanate polyurethane (NIPU) hydrogels
Gennen, Sandro ULg; Grignard, Bruno ULg; Thomassin, Jean-Michel ULg et al

Poster (2016, October 13)

Due to its good biocompatibility, biodegradation and excellent mechanical properties, polyurethane (PU) is a material of choice for biomedical applications (gloves, tubing, artificial membranes…) and, as ... [more ▼]

Due to its good biocompatibility, biodegradation and excellent mechanical properties, polyurethane (PU) is a material of choice for biomedical applications (gloves, tubing, artificial membranes…) and, as hydrogels, it was used as wound dressing, soft contact lenses, drug delivery systems and scaffolds for tissue engineering. Classically, PU are synthesized by a step-growth polymerization between poly (di-)ols and poly (di-) isocyanates. Due to the toxicity of isocyanates, REACH regulations have changed and, today, there is a need to develop greener and safer route to produce isocyanate-free PUs. This contribution focus on the synthesis of NIPU hydrogels by copolymerizing a bifunctional CO2-sourced hydrophilic PEG bi-cyclic carbonate with diamines in presence of a cross- linker. The PEG bi-cyclic carbonates was prepared via a CO2/epoxide coupling reactions using a new efficient organocatalytic system based on the use of an ammonium salt (TBAI) in combination with a fluorinated alcohol. [less ▲]

Detailed reference viewed: 112 (7 ULg)
Full Text
See detailMOSSBAUER SPECTROSCOPY AS A COMPLEMENTARY TECHNIQUE OF X-RAY DIFFRACTION TO INVESTIGATE ELECTRODE MATERIALS FOR ALKALI-ION BATTERIES
Mahmoud, Abdelfattah ULg; sougrati, Moulay Tahar; karegeya, claude et al

Poster (2016, October 09)

Lithium-ion batteries (LIBs) have been widely applied as a power source for portable electronics, stationary energy storage systems, and electric vehicles. Nevertheless, as lithium resources continue to ... [more ▼]

Lithium-ion batteries (LIBs) have been widely applied as a power source for portable electronics, stationary energy storage systems, and electric vehicles. Nevertheless, as lithium resources continue to decline worldwide and Li in the Earth’s crust is unevenly distributed as minor-metal. Na-ion batteries are considered to be an alternative to Li-ion batteries owing to the natural abundance of sodium. Indeed, Sodium-ion (Na-ion) batteries are expected to become part of the mix of technologies that will meet the challenges of energy storage. Electrode materials are the most important components in the operation and the performances of Alkali-ion batteries. New electrode materials are required to increase the energy density of Li/Na-ion batteries [1]. Fe based negative electrode materials for Li-ion batteries have been previously investigated to evaluate the electrochemical performances and elucidate the electrochemical reaction mechanisms. Mössbauer spectroscopy has been applied to a variety of fields including chemistry, physics, geology, biology…. In the domain of energy storage, Mössbauer spectroscopy has been used as a powerful tool to investigate the local electronic and structural properties of electrode materials and to determine their reaction mechanisms during charge and discharge of Li/Na-ion batteries [2]. In this poster, we will show from some selected examples how Mössbauer spectroscopy when used with X-ray diffraction can help to improve the performances of electrode materials for Alkali-ion batteries. References 1. Sougrati MT, Darwiche A, Liu X, Mahmoud A, Hermann RP, Jouen S, Monconduit L, Dronskowski R, Stievano L: Transition-metal carbodiimides as molecular negative electrode materials for lithium- and sodium-ion batteries with excellent cycling properties. Angew Chem Int Ed., 2016, 55: 5090-5095. 2. Brisbois, M., Caes, S., Sougrati, M. T., Vertruyen, B., Schrijnemakers, A., Cloots, R., Eshraghi, N., Hermann, R. P., Mahmoud, A., Boschini, F. Na2FePO4F/Multi-Walled Carbon Nanotubes for Lithium-Ion Batteries_ Operando Mössbauer Study of Spray- Dried Composites. Solar Energy Materials and Solar Cells 2016, 148, 67–72. Acknowledgment A. Mahmoud and F. Boschini would like to kindly thank Wallonie regions for the financial support. [less ▲]

Detailed reference viewed: 70 (9 ULg)