References of "Verlaine, Olivier"
     in
Bookmark and Share    
Full Text
See detailStudies of the Domains II and III of Bacillus subtilis PBP4a in relation with the protein localization
Vanden Broeck, Arnaud ULg; Van Der Heiden, Edwige ULg; Sauvage, Eric ULg et al

Poster (2014, April 23)

Bacillus subtilis PBP4a belongs to the class-C1 PBPs characterized by two internal additional domains of unknown function. Seven lysine residues (K) are protruding from domain II. Four of them have been ... [more ▼]

Bacillus subtilis PBP4a belongs to the class-C1 PBPs characterized by two internal additional domains of unknown function. Seven lysine residues (K) are protruding from domain II. Four of them have been mutated in glutamine residues (Q). Both proteins (WT and Mut4KQ PBP4a) have been produced without signal peptide in E. coli and their sub-cellular localizations determined by measuring the DD-carboxypeptidase activities in the different compartments (cytoplasmic vs membrane attached proteins). In order to detect a possible influence of the PBP4a domain III in the localization of the protein, its encoding sequence has been cloned into pET-28b-BlaP, a vector allowing the production of WT BlaP β-lactamase or BlaP/DIII chimeric protein (with domain III inserted in a permissive loop of BlaP). The nitrocefin hydrolysis activities of BlaP or BlaP/DIII have been measured in the different cellular compartments. [less ▲]

Detailed reference viewed: 36 (18 ULg)
Full Text
Peer Reviewed
See detailMacrocyle-embedded b-lactams as novel inhibitors of the Penicillin Binding Protein PBP2a from MRSA
Dive, Georges ULg; Bouillon, Camille; Sliwa, Aline et al

in European Journal of Medicinal Chemistry (2013), 64

Detailed reference viewed: 8 (6 ULg)
Full Text
Peer Reviewed
See detailExploration of the chemical space of novel naphthalene-sulfonamide and anthranilic acid-based inhibitors of penicillin-binding Proteins
Sosic, Izidor; Turk, Samo; Sinreih, Masa et al

in Acta Chimica Slovenica (2012), 59(2), 380-388

Penicillin-binding proteins are a well established, validated and still a very promising target for the design and development of new antibacterial agents. Based on our previous discovery of several ... [more ▼]

Penicillin-binding proteins are a well established, validated and still a very promising target for the design and development of new antibacterial agents. Based on our previous discovery of several noncovalent small-molecule inhibitor hits for resistant PBPs we decided to additionally explore the chemical space around these compounds. In order to clarify their structure-activity relationships for PBP inhibition two new series of compounds were synthesized, characterized and evaluated biochemically: the derivatives of anthranilic acid and naphthalene-sulfonamide derivatives. The target compounds were tested for their inhibitory activities on three different transpeptidases: PBP2a from methicillin-resistant Staphylococcus aureus (MRSA) strains, PBP5fm from Enterococcus faecium strains, and PBP1b from Streptococcus pneumoniae strains. The most promising results for both of these series of compounds were obtained against the PBP2a enzyme with the IC50 values in the micromolar range. Although these results do not represent a significant breakthrough in the field of noncovalent PBP inhibitors, they do provide useful structure-activity relationship data, and thus a more solid basis for the design of potent and noncovalent inhibitors of resistant PBPs. [less ▲]

Detailed reference viewed: 65 (5 ULg)
Full Text
Peer Reviewed
See detailStructure-Guided Design of Cell Wall Biosynthesis Inhibitors That Overcome beta-Lactam Resistance in Staphylococcus aureus (MRSA).
Contreras-Martel, Carlos; Amoroso, Ana Maria ULg; Woon, Esther C.Y. et al

in ACS Chemical Biology (2011)

beta-Lactam antibiotics have long been a treatment of choice for bacterial infections since they bind irreversibly to Penicillin-Binding Proteins (PBPs), enzymes that are vital for cell wall biosynthesis ... [more ▼]

beta-Lactam antibiotics have long been a treatment of choice for bacterial infections since they bind irreversibly to Penicillin-Binding Proteins (PBPs), enzymes that are vital for cell wall biosynthesis. Many pathogens express drug-insensitive PBPs rendering beta-lactams ineffective, revealing a need for new types of PBP inhibitors active against resistant strains. We have identified alkyl boronic acids that are active against pathogens including methicillin-resistant S. aureus (MRSA). The crystal structures of PBP1b complexed to 11 different alkyl boronates demonstrate that in vivo efficacy correlates with the mode of inhibitor side chain binding. Staphylococcal membrane analyses reveal that the most potent alkyl boronate targets PBP1, an autolysis system regulator, and PBP2a, a low beta-lactam affinity enzyme. This work demonstrates the potential of boronate-based PBP inhibitors for circumventing beta-lactam resistance and opens avenues for the development of novel antibiotics that target Gram-positive pathogens. [less ▲]

Detailed reference viewed: 47 (4 ULg)
Full Text
Peer Reviewed
See detailNew noncovalent inhibitors of penicillin-binding proteins from penicillin-resistant bacteria.
Turk, Samo; Verlaine, Olivier ULg; Gerards, Thomas ULg et al

in PloS one (2011), 6(5), 19418

BACKGROUND: Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs beta-lactams inhibit transpeptidase ... [more ▼]

BACKGROUND: Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs beta-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for beta-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs. METHODOLOGY/PRINCIPAL FINDINGS: Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains. CONCLUSIONS: We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria. [less ▲]

Detailed reference viewed: 34 (13 ULg)