References of "Vauclair, S"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEstimating the p-mode frequencies of the solar twin 18 Scorpii
Bazot, M.; Campante, T.L.; Chaplin, W.J. et al

in Astronomy and Astrophysics (2012), 544

Solar twins have been a focus of attention for more than a decade, because their structure is extremely close to that of the Sun. Today, thanks to high-precision spectrometers, it is possible to use ... [more ▼]

Solar twins have been a focus of attention for more than a decade, because their structure is extremely close to that of the Sun. Today, thanks to high-precision spectrometers, it is possible to use asteroseismology to probe their interiors. Our goal is to use time series obtained from the HARPS spectrometer to extract the oscillation frequencies of 18 Sco, the brightest solar twin. We used the tools of spectral analysis to estimate these quantities. We estimate 52 frequencies using an MCMC algorithm. After examination of their probability densities and comparison with results from direct MAP optimization, we obtain a minimal set of 21 reliable modes. The identification of each pulsation mode is straightforwardly accomplished by comparing to the well-established solar pulsation modes. We also derived some basic seismic indicators using these values. These results offer a good basis to start a detailed seismic analysis of 18 Sco using stellar models. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailThe radius and mass of the close solar twin 18 Scorpii derived from asteroseismology and interferometry
Bazot, Michaël; Ireland, M. J.; Huber, D. et al

in Astronomy and Astrophysics (2011), 526

The growing interest in solar twins is motivated by the possibility of comparing them directly to the Sun. To carry on this kind of analysis, we need to know their physical characteristics with precision ... [more ▼]

The growing interest in solar twins is motivated by the possibility of comparing them directly to the Sun. To carry on this kind of analysis, we need to know their physical characteristics with precision. Our first objective is to use asteroseismology and interferometry on the brightest of them: 18 Sco. We observed the star during 12 nights with HARPS for seismology and used the PAVO beam-combiner at CHARA for interferometry. An average large frequency separation 134.4 ± 0.3 μHz and angular and linear radiuses of 0.6759 ± 0.0062 mas and 1.010 ± 0.009 Rsun were estimated. We used these values to derive the mass of the star, 1.02 ± 0.03 Msun. [less ▲]

Detailed reference viewed: 16 (4 ULg)
Full Text
Peer Reviewed
See detailFirst asteroseismic results from CoRoT
Michel, Eric; Baglin, A.; Weiss, W. W. et al

in Communications in Asteroseismology (2008), 156

About one year after the end of the first observational run and six months after the first CoRoT data delivery, we comment the data exploitation progress for different types of stars. We consider first ... [more ▼]

About one year after the end of the first observational run and six months after the first CoRoT data delivery, we comment the data exploitation progress for different types of stars. We consider first results to illustrate how these data of unprecedented quality shed a new light on the field of stellar seismology. [less ▲]

Detailed reference viewed: 44 (18 ULg)
Full Text
See detailThe Seismology Programme of CoRoT
Michel, Eric; Baglin, A.; Auvergne, M. et al

in Proceedings of "The CoRoT Mission Pre-Launch Status - Stellar Seismology and Planet Finding (2006, November 01)

We introduce the main lines and specificities of the CoRoT Seismology Core Programme. The development and consolidation of this programme has been made in the framework of the CoRoT Seismology Working ... [more ▼]

We introduce the main lines and specificities of the CoRoT Seismology Core Programme. The development and consolidation of this programme has been made in the framework of the CoRoT Seismology Working Group. With a few illustrative examples, we show how CoRoT data will help to address various problems associated with present open questions of stellar structure and evolution. [less ▲]

Detailed reference viewed: 52 (34 ULg)
Peer Reviewed
See detailThe life of stars and their planets
Catala, C.; Aerts, C.; Aigrain, S. et al

in Favata, F.; Sanz-Forcada, J.; Giménez, A. (Eds.) et al 39TH ESLAB Symposium on Trends in Space Science and Cosmic Vision 2020 (2005, December 01)

We lack a reliable scenario for the formation and evolution of stars and their planetary systems, involving key factors such as magnetic fields and turbulence. We present the case for a mission concept ... [more ▼]

We lack a reliable scenario for the formation and evolution of stars and their planetary systems, involving key factors such as magnetic fields and turbulence. We present the case for a mission concept that will clarify these problems and give us a global view of the evolution of combined star and planetary systems. This will be achieved by simultaneously addressing the search for planetary transits in front of a large number of stars, including many nearby stars, the study of their internal structure and evolution via asteroseismology, and that of their magnetic activity, via UV monitoring. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
See detailAdditional science potential for COROT
Weiss, W. W.; Aerts, C.; Aigrain, S. et al

in Favata, F.; Aigrain, S.; Wilson, A. (Eds.) Stellar Structure and Habitable Planet Finding (2004, January 01)

Space experiments which are aiming towards asteroseismology and the detection of exoplanets, like COROT or MOST, Eddington and Kepler, are designed to deliver high precision photometric data. Obviously ... [more ▼]

Space experiments which are aiming towards asteroseismology and the detection of exoplanets, like COROT or MOST, Eddington and Kepler, are designed to deliver high precision photometric data. Obviously, they can be used also for other purposes than the primary science goals and in addition many other targets can or will be automatically observed simultaneously with the primary targets. As a consequence, fascinating possibilities for additional (parallel, secondary) science projects emerge. For COROT a dedicated working group was thus established with the goal to contribute any useful information which may optimize the scientific output of the mission. [less ▲]

Detailed reference viewed: 11 (2 ULg)