References of "Vanzi, L"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe yellow hypergiant HR 5171 A: Resolving a massive interacting binary in the common envelope phase
Chesneau, O.; Meilland, A.; Chapellier, E. et al

in Astronomy and Astrophysics (2014), 563

Context. Only a few stars are caught in the very brief and often crucial stages when they quickly traverse the Hertzsprung-Russell diagram, and none has yet been spatially resolved in the mass transfer ... [more ▼]

Context. Only a few stars are caught in the very brief and often crucial stages when they quickly traverse the Hertzsprung-Russell diagram, and none has yet been spatially resolved in the mass transfer phase. Aims: We initiated long-term optical interferometry monitoring of the diameters of massive and unstable yellow hypergiants (YHG) with the goal of detecting both the long-term evolution of their radius and shorter term formation of a possible pseudo-photosphere related to proposed large mass-loss events. Methods: We observed HR 5171 A with AMBER/VLTI. We also examined archival photometric data in the visual and near-IR spanning more than 60 years, as well as sparse spectroscopic data. Results: HR 5171 Aexhibits a complex appearance. Our AMBER data reveal a surprisingly large star for a YHG R∗ = 1315 ± 260R⊙ (or ~6.1 AU) at the distance of 3.6 ± 0.5 kpc. The source is surrounded by an extended nebulosity, and these data also show a large level of asymmetry in the brightness distribution of the system, which we attribute to a newly discovered companion star located in front of the primary star. The companion's signature is also detected in the visual photometry, which indicates an orbital period of Porb = 1304 ± 6 d. Modeling the light curve with the NIGHTFALL program provides clear evidence that the system is a contact or possibly over-contact eclipsing binary. A total current system mass of 39^+40_-22 M⊙ and a high mass ratio q ≥ 10 is inferred for the system. Conclusions: The low-mass companion of HR 5171 is very close to the primary star that is embedded within its dense wind. Tight constraints on the inclination and vsini of the primary are lacking, which prevents us from determining its influence precisely on the mass-loss phenomenon, but the system is probably experiencing a wind Roche-Lobe overflow. Depending on the amount of angular momentum that can be transferred to the stellar envelope, HR 5171 A may become a fast-rotating B[e]/luminous blue variable/Wolf-Rayet star. In any case, HR 5171 A highlights the possible importance of binaries for interpreting the unstable YHGs and for massive star evolution in general. [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
Peer Reviewed
See detailA ring system detected around the Centaur (10199) Chariklo
Braga-Ribas; Sicardy; Ortiz et al

in Nature (2014)

Detailed reference viewed: 18 (4 ULg)
Full Text
Peer Reviewed
See detailThe Size, Shape, Albedo, Density, and Atmospheric Limit of Transneptunian Object (50000) Quaoar from Multi-chord Stellar Occultations
Braga-Ribas, F.; Sicardy, B.; Ortiz, J. L. et al

in Astrophysical Journal (2013), 773

We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation ... [more ▼]

We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation observed on 2012 October 15. If the timing of the five chords obtained in 2011 were correct, then Quaoar would possess topographic features (crater or mountain) that would be too large for a body of this mass. An alternative model consists in applying time shifts to some chords to account for possible timing errors. Satisfactory elliptical fits to the chords are then possible, yielding an equivalent radius R [SUB]equiv[/SUB] = 555 ± 2.5 km and geometric visual albedo p[SUB]V[/SUB] = 0.109 ± 0.007. Assuming that Quaoar is a Maclaurin spheroid with an indeterminate polar aspect angle, we derive a true oblateness of \epsilon = 0.087^{+0.0268}_{-0.0175}, an equatorial radius of 569^{+24}_{-17} km, and a density of 1.99 ± 0.46 g cm[SUP]–3[/SUP]. The orientation of our preferred solution in the plane of the sky implies that Quaoar's satellite Weywot cannot have an equatorial orbit. Finally, we detect no global atmosphere around Quaoar, considering a pressure upper limit of about 20 nbar for a pure methane atmosphere. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
See detailCharon's Size And Orbit From Double Stellar Occultations
Sicardy, Bruno; Braga-Ribas, F.; Widemann, T. et al

in AAS/Division for Planetary Sciences Meeting Abstracts (2012, October 01)

Stellar occultations of a same star by both Pluto and Charon (double events) yield instantaneous relative positions of the two bodies projected in the plane of the sky, at 10km-level accuracy. Assuming a ... [more ▼]

Stellar occultations of a same star by both Pluto and Charon (double events) yield instantaneous relative positions of the two bodies projected in the plane of the sky, at 10km-level accuracy. Assuming a given pole orientation for Charon's orbit, double events provide the satellite plutocentric distance r at a given orbital longitude L (counted from the ascending node on J2000 mean equator), and finally, constraints on its orbit. A double event observed on 22 June 2008 provides r=19,564+/-14 km at L=153.483+/-0.071 deg. (Sicardy et al. 2011), while another double event observed on 4 June 2011 yields: r=19,586+/-15 km at L = 343.211+/-0.072 deg. (all error bars at 1-sigma level). These two positions are consistent with a circular orbit for Charon, with a semi-major axis of a=19,575+\-10 km. This can be compared to the circular orbit found by Buie et al. (2012), based on Hubble Space Telescope data, with a=19,573+/-2 km. The 4 June 2011 stellar occultation provides 3 chords across Charon, from which a radius of Rc= 602.4+/-1.6 km is derived. This value can be compared to that obtained from the 11 July 2005 occultation: Rc= 606.0+/-1.5 km (Person et al. 2006) and Rc= 603.6+/-1.4 km (Sicardy et al. 2006). A third double event, observed on 23 June 2011 is under ongoing analysis, and will be presented. Buie et al. (2012), AJ 144, 15-34 (2012) Person et al, AJ 132, 1575-1580 (2006) Sicardy et al., Nature 439, 52-54 (2006) Sicardy et al., AJ 141, 67-83 (2011) B.S. thanks ANR "Beyond Neptune II". L.A.Y. acknowledges support by NASA, New Horizons and National Geographic grants. We thank B. Barnard, M.J. Brucker, J. Daily, C. Erikson, W. Fukunaga, C. Harlinten, C. Livermore, C. Nance, J.R. Regester, L. Salas, P. Tamblyn, R. Westhoff for help in the observations. [less ▲]

Detailed reference viewed: 27 (0 ULg)
Full Text
See detailStellar Occultations by TNOs: the January 08, 2011 by (208996) 2003 AZ84 and the May 04, 2011 by (50000) Quaoar
Braga-Ribas, F.; Sicardy, B.; Ortiz, J. L. et al

in EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France. <A href="http://meetings.copernicus.org/epsc-dps2011">http://meetings.copernicus.org/epsc-dps2011</A>, p.1060 (2011, October 01)

Between February 2010 and May 2011, our group has observed five stellar occultations by Trans-Neptunian Objects (TNOs), giving the size and shape for some of the biggest TNO's: Varuna, Eris, 2003 AZ84 ... [more ▼]

Between February 2010 and May 2011, our group has observed five stellar occultations by Trans-Neptunian Objects (TNOs), giving the size and shape for some of the biggest TNO's: Varuna, Eris, 2003 AZ84, Makemake and Quaoar. Here we present two of them: the January 08 stellar occultation by 2003 AZ84, and the May 04 by Quaoar. For the event of 2003 AZ84 we obtained one positive and another negative occultation chords in Chile. We give a lower limit to the diameter of the TNO. The event of Quaoar was observed from 16 sites distributed in Uruguay, Argentina, Chile and Brazil. Five of them yielded positive detection of the occultation. A preliminary analysis shows that the body is probably elongated and significantly bigger than the size determined by Fraser & Brown 2010, with a diameter of 890km. Using the size determined by the occultation, we will discuss the implications for the body density and albedo determination. The upper limit of the atmosphere is also studied. [less ▲]

Detailed reference viewed: 50 (0 ULg)