References of "Vannier, M"
     in
Bookmark and Share    
Full Text
See detailParasitic interference in classical and nulling stellar interferometry
Matter, A.; Defrere, Denis ULiege; Danchi, W. C. et al

in Optical and Infrared Interferometry III (2012, July 01)

A variety of instrumental effects can corrupt the observable quantities in optical or nulling stellar interferometry. One such effect is parasitic interference, which can occur inside an interferometric ... [more ▼]

A variety of instrumental effects can corrupt the observable quantities in optical or nulling stellar interferometry. One such effect is parasitic interference, which can occur inside an interferometric instrument. Because of diffraction effects related to beam propagation along finite size optics, or parasitic reflections inside transmitting optics, a coherent crosstalk may occur between the beams and create a parasitic interference pattern superimposed on the genuine one. We developed an analytical approach to describe the impact of this effect on the observables of classical and nulling stellar interferometers. Considering classical interferometry, we show that differential phase and closure phase are both corrupted, depending on the crosstalk level and the residual piston between the beams. Considering typical specifications of piston correction of ground-based interferometers (≍ 100 nm), the detection of hot Jupiter-like planets by differential phase implies a tolerance on the parasitic flux to about 5% of the incident intensity. Also, we show that the closure phase relation does not remove this parasitic contribution. The corresponding corrupted closure phase is not zero for an unresolved source, and depends on the residual piston. Considering nulling interferometry, we show that parasitic effects modify the transmission map level, depending on the crosstalk level and the phase shift between primary and secondary beams. In the extreme case of a pi-phase shift, the crosstalk effect implies a decrease of the final output signal-to-noise ratio. Numerical simulations, adapted to handle consistently crosstalk, are then performed to estimate this degradation and validate our theoretical study. [less ▲]

Detailed reference viewed: 21 (1 ULiège)
Full Text
See detailMatisse
Lopez, B.; Lagarde, S.; Wolf, S. et al

in Moorwood, 1 (Ed.) Science with the VLT in the ELT Era (2009)

MATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase relations and ... [more ▼]

MATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase relations and thus offer an efficient capability for image reconstruction in the L, M and N bands of the mid-infrared domain. [less ▲]

Detailed reference viewed: 16 (1 ULiège)
Full Text
See detailMATISSE Science Cases
Wolf, S.; Lopez, B.; Jaffe, W. et al

in Moorwood, A. (Ed.) Science with the VLT in the ELT Era (2009)

MATISSE is foreseen as a mid-infrared spectro-interferometric instrument combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase ... [more ▼]

MATISSE is foreseen as a mid-infrared spectro-interferometric instrument combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase relations and thus offer an efficient capability for image reconstruction. In addition to this, MATISSE will open 2 new observing windows at the VLTI: the L and M band in addition to the N band. Furthermore, the instrument will offer the possibility to perform simultaneous observations in separate bands. MATISSE will also provide several spectroscopic modes. In summary, MATISSE can be seen as a successor of MIDI by providing imaging capabilities in the mid-infrared domain (for a more detailed description of MATISSE see Lopez et al., these proceedings). [less ▲]

Detailed reference viewed: 21 (0 ULiège)