References of "Vanderghem, Caroline"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGenotype contribution to the chemical composition of banana rachis and implications for thermo/biochemical conversion
Tiappi Deumaga, Mathias Florian; Happi Emaga, Thomas; Tchokouassom, Raphael et al

in Biomass Conversion and Biorefinery (in press)

Chemical composition of banana rachis from three varieties (Grande naine, Pelipita, and CRBP969) was ana- lyzed, and the genotype contribution to composition variabil- ity was investigated. Wet chemistry ... [more ▼]

Chemical composition of banana rachis from three varieties (Grande naine, Pelipita, and CRBP969) was ana- lyzed, and the genotype contribution to composition variabil- ity was investigated. Wet chemistry and instrumental analysis procedures (X-ray diffraction, 31P NMR spectroscopy, and thermogravimetry) were used. Some significant differences were found among the three genotypes: GN-AAA genotype was found to be significantly the highest in ash fraction (30.16 %) and the lowest in acid insoluble lignin (6.58 %) at 95 % confidence level. It showed also the highest content in potassium (43.5 % in ash). Implication of compositional dif- ferences on valorization efficiency by biochemical or thermo- chemical pathways was investigated. For this purpose, corre- lation coefficients between compositional characteristics and yields in volatile compounds from pyrolysis and glucose yields from enzymatic saccharification were analyzed. Ash content was revealed to be the main drawback parameter for volatile yields from pyrolysis (r = −0.93), while for glucose yields during saccharification were limited mainly by the con- tent in guaiacyl units of the lignin fraction (r = −0.98). How- ever, a strong and positive correlation was established be- tween the volatiles yield and the acid insoluble lignin content (r = 0.98) Thus, according to these observations and based on their compositional significant differences, GN-AAA was the better candidate for bioconversion pathway while PPT-ABB and CRBP969-AAAB samples were shown to be better can- didates for thermochemical conversion pathway. This work gives important preliminary information for considering ba- nana rachis as an interesting feedstock candidate for biorefinery. [less ▲]

Detailed reference viewed: 68 (28 ULg)
Full Text
Peer Reviewed
See detailComparative biochemical analysis after steam pretreatments of lignocellulosic biomass from six combined morphological parts of Williams Cavendish banana plant (Triploid Musa AAA group)
Kamdem, Irenée ULg; Jacquet, Nicolas ULg; Tiappi Deumaga, Mathias Florian ULg et al

in Waste Management & Research : The Journal of the International Solid Wastes & Public Cleansing Association (2015)

The accessibility of fermentable substrates to enzymes is a limiting factor for the efficient bioconversion of agricultural wastes in the context of sustainable development. This paper presents the ... [more ▼]

The accessibility of fermentable substrates to enzymes is a limiting factor for the efficient bioconversion of agricultural wastes in the context of sustainable development. This paper presents the results of a biochemical analysis performed on Williams Cavendish Lignocellulosic Biomass (WCLB) after steam cracking (SC) and steam explosion (SE) pretreatments. Solid (S) and liquid (L) fractions (Fs) obtained from SC pretreatment performed at 180°C (SLFSC180) and 210°C (SLFSC210) generated, after diluted acid hydrolysis, the highest proportions of neutral sugar (NS) contents, specifically 52.82±3.51 and 49.78±1.39 %w/w WCLB’s dry matter (DM), respectively. The highest proportions of glucose were found in SFSC210 (53.56±1.33 %w/w DM) and SFSC180 (44.47±0.00 %w/w DM), while the lowest was found in unpretreated WCLB (22.70±0.71 %w/w DM). Total NS content assessed in each LF immediately after SC and SE pretreatments was less than 2 %w/w of the LF’s DM, thus revealing minor acid autohydrolysis consequently leading to minor NS production during the steam pretreatment. WCLB subjected to SC at 210°C (SC210) generated up to 2.7-fold bioaccessible glucan and xylan. SC and SE pretreatments showed potential for the deconstruction of WCLB (delignification, depolymerisation, decrystallization and deacetylation), enhancing its enzymatic hydrolysis. The concentrations of enzymatic inhibitors such as 2-furfuraldehyde and 5-(hydroxymethyl)furfural from LFSC210 were the highest (41 and 21 µg mL-1, respectively). This study shows that steam pretreatments in general and SC210 in particular are required for efficient bioconversion of WCLB. Yet, biotransformation through biochemical processes (e.g., anaerobic digestion) must be performed to assess the efficiency of these pretreatments. [less ▲]

Detailed reference viewed: 18 (3 ULg)
Full Text
Peer Reviewed
See detailMediterranean agri-food processing wastes pyrolysis after pre-treatment and recovery of precursor materials: A TGA-based kinetic modeling study
Manara, Panagiota; Vamvuka, V; Sfakiotakis, S et al

in Food Research International (2015), 73

Valorization strategies of wastes from agri-food processes are intertwined with clean technological approaches and eco-industrial management. By-products from Mediterranean agri-food processes such as ... [more ▼]

Valorization strategies of wastes from agri-food processes are intertwined with clean technological approaches and eco-industrial management. By-products from Mediterranean agri-food processes such as olive oil, wine and fruit create a considerable disposal problem for the agro-industry. Their characteristics in combination with Mediterranean climate enhance microbial development and can be source of health and safety concerns. After pre-treatment and recovery of valuable precursor materials (lignin, pulp), pyrolysis can be used for fuels, chemicals and carbon bio-based materials production. Since thermal degradation kinetic studies are a key step for the efficient design of thermo-chemical processes, in this study pyrolysis experiments were performed, using TGA for the estimation of the process kinetic parameters. The independent parallel reaction model validat- ed against experimental results, showing a good agreement with experimental data, with deviation values rang- ing from 1.07 to 3.54%. [less ▲]

Detailed reference viewed: 44 (5 ULg)
Full Text
Peer Reviewed
See detailApplication of Steam Explosion as Pretreatment on Lignocellulosic Material: A Review
Jacquet, Nicolas ULg; Maniet, Guillaume ULg; Vanderghem, Caroline ULg et al

in Industrial & Engineering Chemistry Research (2015), 54(10), 2593-2598

Steam explosion is a thermo-mechanicochemical pretreatment which allows the breakdown of lignocellulosic structural components by the action of heating, formation of organic acids during the process, and ... [more ▼]

Steam explosion is a thermo-mechanicochemical pretreatment which allows the breakdown of lignocellulosic structural components by the action of heating, formation of organic acids during the process, and shearing forces resulting in the expansion of the moisture. Two distinct stages compose the steam-explosion process: vapocracking and explosive decompression which include modification of the material components: hydrolysis of hemicellulosic components (mono- and oligosaccharides released), modification of the chemical structure of lignin, and modification of the cellulose crystallinity index, etc. These effects allow the opening of lignocellulosic structures and influence the enzymatic hydrolysis yield of the material. [less ▲]

Detailed reference viewed: 14 (7 ULg)
Full Text
See detailINFLUENCE OF STEAM EXPLOSION ON THECRYSTALLINITY OF CELLULOSE FIBER
Jacquet, Nicolas ULg; Vanderghem, Caroline ULg; Danthine, Sabine ULg et al

Poster (2014, February 07)

The aim of the present study is to compare the effect of different steam explosion treatments on crystallinity properties of a pure bleached cellulose. Steam explosion process is composed of two distinct ... [more ▼]

The aim of the present study is to compare the effect of different steam explosion treatments on crystallinity properties of a pure bleached cellulose. Steam explosion process is composed of two distinct stages: vapocracking and explosive decompression. The treatment intensities is determined by a severity factor, established by a correlation between temperature process and retention time. The results show that steam explosion treatment has an impact on the crystallinity properties of pure cellulose fiber. When the severity factor is below 5.2, an increase of the overall crystallinity of the samples is observed with the treatment intensities. For higher intensities, a significant thermal degradation of cellulose lead to an important change in substrate composition, which lead to a further decrease of cellulose crystallinity. [less ▲]

Detailed reference viewed: 44 (3 ULg)
Full Text
Peer Reviewed
See detailCan Lignin Wastes Originating From Cellulosic Ethanol Biorefineries Act as Radical Scavenging Agents?
Vanderghem, Caroline ULg; Jacquet, Nicolas ULg; Richel, Aurore ULg

in Australian Journal of Chemistry (2014), 67

Lignin is a co-product from the biorefinery and paper industry. Its non-energetic valorization remains a field of extensive R&D developments. In this perspective, this study is undertaken to evaluate the ... [more ▼]

Lignin is a co-product from the biorefinery and paper industry. Its non-energetic valorization remains a field of extensive R&D developments. In this perspective, this study is undertaken to evaluate the radical scavenging ability of some herbaceous lignins. These lignins, extracted from Miscanthus (Miscanthus x giganteus) or Switchgrass (Panicum Virgatum L.), are selected as benchmarks for this study as a function of their chemical structure and average molecular weight. These technical lignins, side-products in the bioethanol production process, are found to display a moderate antioxidant activity as evaluated by the DPPH (1,1-diphenyl-2-picrylhydrazil) free radical scavenging test system. A correlation between the radical scavenging properties and the molecular features is proposed and discussed. Infrared spectroscopy is evaluated as a straightforward qualitative prediction tool for the radical scavenging capacity. [less ▲]

Detailed reference viewed: 67 (34 ULg)
Full Text
Peer Reviewed
See detailLignin extraction from Mediterranean agro-wastes: Impact of pretreatment conditions on lignin chemical structure and thermal degradation behavior
Manara, Panagiota; Zabaniotou, Anastasia; Vanderghem, Caroline ULg et al

in Catalysis Today (2014), 223

Three different types of Mediterranean, agro-industrial wastes (olive kernels, grape pomace/seeds, peach kernels), were subjected to two pretreatment processes, a chemical/organosolv and a physicochemical ... [more ▼]

Three different types of Mediterranean, agro-industrial wastes (olive kernels, grape pomace/seeds, peach kernels), were subjected to two pretreatment processes, a chemical/organosolv and a physicochemical one. The organosolv process included lignocellulosic biomass treatment with formic acid/acetic acid/water (30/50/20, v/v%), for 3 h at 107 °C, while the physicochemical method was conducted by immersing the biomass in a water/ethanol (8/92, v/v%), H2SO4 0.32 M, solvent and further exposing the slurry to microwave irradiation (maximum 250 W) for 1/2 h at 150 °C. Both processes were evaluated regarding the achieved delignification and the purity of the extracted lignins. The effect of the pretreatment processes onto the structure and thermal decomposition behavior of the extracted lignins was investigated via FT-IR and TGA analysis, respectively. The objective of the research work was to investigate potential valorization routes for these biomass agro-residues in the context of a biorefinery, focusing on lignin extraction. The pretreatment results showed that the obtained lignins, derived from both procedures, were of high purity (>82 wt%). Under the organosolv procedure, peach kernel delignification showed the maximum value (∼16 wt%), while under microwave pretreatment, olive kernel delignification showed the maximum value (∼35 wt%). Grape pomace/seeds appeared to be the most resistant in both treatments. [less ▲]

Detailed reference viewed: 86 (33 ULg)
Full Text
Peer Reviewed
See detailOptimization of a formic/acetic acid delignification treatment on beech wood and its influence on the structural characteristics of the extracted lignins
Simon, Mathilde; Brostaux, Yves ULg; Vanderghem, Caroline ULg et al

in Journal of Chemical Technology & Biotechnology (2014), 89(1), 128-136

Background In order to replace petrochemicals by bio-based lignin products in a lot of high value-added applications, a formic/acetic acid treatment was adapted to beech wood (Fagus sylvatica L.) for ... [more ▼]

Background In order to replace petrochemicals by bio-based lignin products in a lot of high value-added applications, a formic/acetic acid treatment was adapted to beech wood (Fagus sylvatica L.) for lignin extraction. Results Beech wood particles were delignified at atmospheric pressure by a formic acid/acetic acid/water mixture. Cooking time and temperature were optimized for delignification, pulp yield and 2-furfural concentration. Response surface design analysis revealed that delignification yield increased with cooking time and temperature. Conclusion The multi-criteria optimization of delignification was used to find the ideal cooking conditions (5h07 min, 104.2°C) which could be satisfactory for the maximization of delignification (70.5%) and pulp yield (58.7%) and, to a lesser extent, for the minimization of 2-furfural production. Treatment conditions were found to influence the chemical structure of extracted lignins. Cooking time and temperature influenced inversely lignin molecular weights. [less ▲]

Detailed reference viewed: 95 (49 ULg)
See detailLignin as a raw material for industrial materials applications
Richel, Aurore ULg; Vanderghem, Caroline ULg; Jacquet, Nicolas ULg et al

Poster (2014)

Native lignin is an abundant biopolymer on earth and represents 15-30% by weight of the lignocellulosic biomass. Lignin is a heterogeneous cross-linked polymer composed of phenylpropane units (guaiacyl ... [more ▼]

Native lignin is an abundant biopolymer on earth and represents 15-30% by weight of the lignocellulosic biomass. Lignin is a heterogeneous cross-linked polymer composed of phenylpropane units (guaiacyl, syringyl or p-hydroxyphenyl) linked together by a panel of specific ether or carbon-carbon bonds.[1] Nowadays, large amounts of lignins and lignin-based wastes are available and originate either from the pulp and paper manufacturing or from the production of bioethanol from lignocellulose. [2] Typically, these lignins are dedicated to energetic purposes by combustion. In recent years however, novel axes for high added value applications have emerged and concern, notably, the use of lignin as performance products (e.g. polymer additives, binders) or specialty chemicals (e.g. surface-active agents) for materials applications.[3] Herein, several applications of lignin in materials sciences with industrial issues are presented. A correlation is established between the extraction processes from lignocellulosic materials and the chemical structure and physico-chemical properties of lignins.[4] Our research group has also developed new methodologies for the extraction of highly pure lignins from several starting materials, including food wastes, herbaceous raw materials and wood biomass. These methodologies include microwave-assisted extraction and two-step conventional pretreatment involving steam explosion. These methodologies are described in this presentation. [less ▲]

Detailed reference viewed: 92 (18 ULg)
Full Text
Peer Reviewed
See detailWastes of banana ‘s lignocellulosic biomass: a sustainable and renewable source of biogas production
Kamdem, Irenée ULg; Hiligsmann, Serge ULg; Vanderghem, Caroline ULg et al

Poster (2013, November 15)

We highlight in this poster, the results of biogas production and biochemical analysis based on the anaerobic digestion of each type of the lignocellulosic waste from a banana cultivar (Williams Cavendish ... [more ▼]

We highlight in this poster, the results of biogas production and biochemical analysis based on the anaerobic digestion of each type of the lignocellulosic waste from a banana cultivar (Williams Cavendish: triploid Musa AAA group). These wastes are usually abandoned in the plantation after the fruits have been harvested. There is great interest in obtaining energy from this generally neglected biomaterial, particularly in the contexts of global warming and sustainable development. [less ▲]

Detailed reference viewed: 19 (1 ULg)
Peer Reviewed
See detailLignocellulosic biomass pretreatment impact on the extracted lignins chemical structure
Manara, Panagiota; Zabaniotou, Anastasia; Vanderghem, Caroline ULg et al

Poster (2013, October)

Detailed reference viewed: 25 (6 ULg)
Peer Reviewed
See detailLignin as a raw material for industrial materials applications
Richel, Aurore ULg; Vanderghem, Caroline ULg; Jacquet, Nicolas ULg et al

Poster (2013, October)

Native lignin is an abundant biopolymer on earth and represents 15-30% by weight of the lignocellulosic biomass. Lignin is a heterogeneous cross-linked polymer composed of phenylpropane units (guaiacyl ... [more ▼]

Native lignin is an abundant biopolymer on earth and represents 15-30% by weight of the lignocellulosic biomass. Lignin is a heterogeneous cross-linked polymer composed of phenylpropane units (guaiacyl, syringyl or p-hydroxyphenyl) linked together by a panel of specific ether or carbon-carbon bonds.[1] Nowadays, large amounts of lignins and lignin-based wastes are available and originate either from the pulp and paper manufacturing or from the production of bioethanol from lignocellulose. [2] Typically, these lignins are dedicated to energetic purposes by combustion. In recent years however, novel axes for high added value applications have emerged and concern, notably, the use of lignin as performance products (e.g. polymer additives, binders) or specialty chemicals (e.g. surface-active agents) for materials applications.[3] Herein, several applications of lignin in materials sciences with industrial issues are presented. A correlation is established between the extraction processes from lignocellulosic materials and the chemical structure and physico-chemical properties of lignins.[4] Our research group has also developed new methodologies for the extraction of highly pure lignins from several starting materials, including food wastes, herbaceous raw materials and wood biomass. These methodologies include microwave-assisted extraction and two-step conventional pretreatment involving steam explosion. These methodologies are described in this presentation. [less ▲]

Detailed reference viewed: 46 (12 ULg)
Full Text
Peer Reviewed
See detailInfluence of Homogenization Treatment on Physicochemical Properties and Enzymatic Hydrolysis Rate of Pure 5 Cellulose Fibers
Jacquet, Nicolas ULg; Vanderghem, Caroline ULg; Danthine, Sabine ULg et al

in Applied Biochemistry and Biotechnology (2013), 4

The aim of this study is to compare the effect of different homogenization treat- 12 ments on the physicochemical properties and the hydrolysis rate of a pure bleached 13 cellulose. Results obtained show ... [more ▼]

The aim of this study is to compare the effect of different homogenization treat- 12 ments on the physicochemical properties and the hydrolysis rate of a pure bleached 13 cellulose. Results obtained show that homogenization treatments improve the enzymatic 14 hydrolysis rate of the cellulose fibers by 25 to 100 %, depending of the homogenization 15 treatment applied. Characterization of the samples showed also that homogenization had an 16 impact on some physicochemical properties of the cellulose. For moderate treatment inten- 17 sities (pressure below 500 b and degree of homogenization below 25), an increase of water 18 retention values (WRV) that correlated to the increase of the hydrolysis rate was highlighted. 19 Result also showed that the overall crystallinity of the cellulose properties appeared not to be 20 impacted by the homogenization treatment. For higher treatment intensities, homogenized 21 cellulose samples developed a stable tridimentional network that contributes to decrease 22 cellulase mobility and slowdown the hydrolysis process. [less ▲]

Detailed reference viewed: 71 (35 ULg)
Full Text
Peer Reviewed
See detailFast and high yield recovery of arabinose from destarched wheat bran
Aguedo, Mario ULg; Vanderghem, Caroline ULg; Goffin, Dorothée ULg et al

in Industrial Crops & Products (2013), 43

Enzymatically destarched wheat bran (DWB) contained 13.8% of arabinose and 23.1% xylose. Up to a maximum of 70% of the arabinose was progressively released from DWB when heated at 80 or 100°C in media ... [more ▼]

Enzymatically destarched wheat bran (DWB) contained 13.8% of arabinose and 23.1% xylose. Up to a maximum of 70% of the arabinose was progressively released from DWB when heated at 80 or 100°C in media acidified with HCl. Whereas microwave irradiation at higher temperatures in pressure vessels could lead to higher yields of extraction. A Box-Behnken experimental design established an efficient model describing the effects of temperature, irradiation duration and pH on arabinose extraction. The pH appeared as the most important factor of the process. 4-5 min of microwave heating at 150ºC and pH 1 appeared as a fast and highly efficient method to recover more than 90% of the arabinose of DWB. When plotting the percentages of arabinose against the combined severity factors LogR’0 (calculated from the temperature/duration/pH conditions applied), two different fitting profiles were obtained for both the heating techniques. Under microwave heating, high free xylose’s release could also occur. The experimental design led to a quadratic model predicting the release of xylose from DWB. A range of conditions enabled to minimize xylose and hydrolyze around 50% of the total arabinose, yielding a high purity fraction. An alternative would be to release more than 90% of both arabinose and xylose, for further arabinose purification or for a common valorization of both pentoses. [less ▲]

Detailed reference viewed: 118 (38 ULg)
Full Text
Peer Reviewed
See detailComparative biochemical analysis during the anaerobic digestion of lignocellulosic biomass from six morphological parts of Williams Cavendish banana (Triploid Musa AAA group) plants
Kamdem, Irenee ULg; Hiligsmann, Serge ULg; Vanderghem, Caroline ULg et al

in World Journal of Microbiology & Biotechnology (2013)

We studied banana lignocellulosic biomass (BALICEBIOM) that is abandoned after fruit harvesting, and assessed its biochemical methane potential, because of its potential as an energy source. We monitored ... [more ▼]

We studied banana lignocellulosic biomass (BALICEBIOM) that is abandoned after fruit harvesting, and assessed its biochemical methane potential, because of its potential as an energy source. We monitored biogas production from six morphological parts (MPs) of the "Williams Cavendish" banana cultivar using a modified operating procedure (KOP) using KOH. Volatile fatty acid (VFA) production was measured using high performance liquid chromatography. The bulbs, leaf sheaths, petioles-midribs, leaf blades, rachis stems, and floral stalks gave total biogas production of 256, 205, 198, 126, 253, and 221 ml g-1 dry matter, respectively, and total biomethane production of 150, 141, 127, 98, 162, and 144 ml g-1, respectively. The biogas production rates and yields depended on the biochemical composition of the BALICEBIOM and the ability of anaerobic microbes to access fermentable substrates. There were no significant differences between the biogas analysis results produced using KOP and gas chromatography. Acetate was the major VFA in all the MP sample culture media. The bioconversion yields for each MP were below 50 %, showing that these substrates were not fully biodegraded after 188 days. The estimated electricity that could be produced from biogas combustion after fermenting all of the BALICEBIOM produced annually by the Cameroon Development Corporation-Del Monte plantations for 188 days is approximately 10.5 × 106 kW h (which would be worth 0.80-1.58 million euros in the current market). This bioenergy could serve the requirements of about 42,000 people in the region, although CH4 productivity could be improved. © 2013 Springer Science+Business Media Dordrecht. [less ▲]

Detailed reference viewed: 37 (13 ULg)
Full Text
Peer Reviewed
See detailInfluence of steam explosion on physico-chemical properties and hydrolysis rate of pure cellulose fibers
Jacquet, Nicolas ULg; Vanderghem, Caroline ULg; Danthine, Sabine ULg et al

in Bioresource Technology (2012), 121(221-227),

The aim of the present study is to compare the effect of different steam explosion treatments on physicochemical properties and hydrolysis rate of a pure bleached cellulose. The results showed that ... [more ▼]

The aim of the present study is to compare the effect of different steam explosion treatments on physicochemical properties and hydrolysis rate of a pure bleached cellulose. The results showed that moderate steam explosion treatments (severity factor below 5.2) did not improve the enzymatic hydrolysis rate of the cellulose fibers. The characterization of the obtained samples showed an increase of the cellulose accessibility coupled with an increase of the overall crystallinity of the substrate. In these conditions, the higher accessibility is counterbalanced by the increased crystallinity. Indeed, a greater proportion of the substrat is accessible by only a fraction of the enzymatic complex (exo-glucanases) activities. When the severity factor reached 5.2, a decrease of the cellulose enzymatic hydrolysis rate was observed. In this case, TGA analysis showed an increase of the char level at the end of the pyrolysis which traduced an important thermal degradation of the samples. The thermal degradation of cellulose lead to an important change in substrate composition, which induced a decrease of the cellulose ratio available for hydrolysis and caused a decrease of the hydrolysis yields. [less ▲]

Detailed reference viewed: 88 (20 ULg)
Full Text
Peer Reviewed
See detailImprovement of the cellulose hydrolysis yields and hydrolysate concentration by management of enzymes and substrate input
Jacquet, Nicolas ULg; Vanderghem, Caroline ULg; Blecker, Christophe ULg et al

in Cerevisia : Belgian Journal of Brewing and Biotechnology (2012), 37

In order to improve the hydrolysis of cellulose fiber and to obtain highly concentrated hydrolysate, two methods based on successive addition of enzyme and substrate were assessed. The first method, which ... [more ▼]

In order to improve the hydrolysis of cellulose fiber and to obtain highly concentrated hydrolysate, two methods based on successive addition of enzyme and substrate were assessed. The first method, which required only substrate addition, allowed to increase by 50% the hydrolysate concentration and to decrease by 30% enzyme units needed. The second method highlighted the ability to reach very high concentrated hydrolysate (up to 170 g/l) by simultaneous addition of enzyme and substrate. In parallel, relationships between some limiting factors and the yields of hydrolysis were investigated. In conclusion, viscosity evolution of cellulose suspension during hydrolysis step was investigated with an aim to improve the management of enzyme and substrate addition. [less ▲]

Detailed reference viewed: 44 (17 ULg)
See detailOptimization of a formic/acetic acid treatment of beech wood for lignin extraction
Simon, Mathilde ULg; Richel, Aurore ULg; Vanderghem, Caroline ULg et al

Conference (2012, August)

Lignocellulosic substrates are a promising alternative resource for the sustainable production of energy (biofuels), bio-based products and organic compounds. In the past, the extraction and recycling of ... [more ▼]

Lignocellulosic substrates are a promising alternative resource for the sustainable production of energy (biofuels), bio-based products and organic compounds. In the past, the extraction and recycling of cellulose (into fermentable glucose) constituted the central axis of lignocellulosic biorefinery processes. Degraded hemicelluloses and lignins were recovered as side-products with no possibilities of high-added value applications. Within the context of an integrated biorefinery, and for economic reasons, the recovery and the non-energetic valorization of lignins have opened recently new horizons. Lignin is a cross-linked phenolic polymer and is considered as potential alternative to petrochemical polymers or as a source of antioxidants for cosmetics and food industry, resins, chelating agent... As the final application of lignin depends on both extraction process and type of lignocellulosic sources, the development of fast and efficient physicochemical characterization methods is thus a prerequisite to optimize extraction processing conditions. In this study, beech wood particles (Fagus sylvatica L.) are delignified at atmospheric pressure by a formic acid/acetic acid/water mixture. Firstly, response surface methodology is used to optimize cooking time and temperature for delignification, pulp yield and concentration of degradation products (2-furfural and 5-hydroxymethylfurfural). The results highlight that best delignification is obtained in the highest cooking times and temperatures and that 5-hydroxymethylfurfural is produced during the formic/acetic acid treatment but is also degraded into 2-furfural. With the aim to develop an integrated biorefinery approach, multi-criteria optimization is used to find ideal cooking time and temperature (5h07, 104.2°C) leading to the maximization of delignification and pulp yield and to the minimization of 2-furfural production Finally, physicochemical and chemical structures of extracted lignins are found dependent on treatment conditions harshness. [less ▲]

Detailed reference viewed: 86 (26 ULg)