References of "Van Vlierberghe, Sandra"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMultifactorial Optimization of Contrast-Enhanced Nanofocus Computed Tomography for Quantitative Analysis of Neo-Tissue Formation in Tissue Engineering Constructs.
Sonnaert, Maarten; Kerckhofs, Greet; Papantoniou, Ioannis et al

in PloS one (2015), 10(6), 0130227

To progress the fields of tissue engineering (TE) and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells ... [more ▼]

To progress the fields of tissue engineering (TE) and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds) becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells) in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial 'design of experiments' approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid) and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailpH-responsive flower-type micelles formed by a biotinylated poly(2-vinylpyridine)-block-poly(ethylene-oxide)-block-poly(ε-caprolactone) triblock copolymer
Van Butsele, Kathy ULg; Cajot, Sébastien ULg; Van Vlierberghe, Sandra et al

in Advanced Functional Materials (2009), 19(9), 1416-1425

In the present work, a method is proposed to assemble pH-responsive, flower-like micelles that can expose a targeting unit at their periphery upon a decrease in pH. The micelles are composed of a novel ... [more ▼]

In the present work, a method is proposed to assemble pH-responsive, flower-like micelles that can expose a targeting unit at their periphery upon a decrease in pH. The micelles are composed of a novel biotinylated triblock copolymer of poly(-caprolactone)-block-poly(ethylene oxide)-block-poly(2-vinylpyridine) (PCL-b-PEO-b-P2VP) and the non-biotinylated analogue. The block copolymers are synthesized by sequential anionic and ring-opening polymerization. The pH-dependent micellization behaviour in aqueous solution of the triblock copolymers developed is studied using dynamic light scattering, zeta potential, transmission electron microscopy (TEM), and fluorimetric measurements. The shielding of the biotin at neutral pH and their availability at the micelle surface upon protonation is established by TEM and surface plasmon resonance with avidin and streptavidin-coated gold surfaces. The preliminary stealthy behavior of these pH-responsive micelles is examined using the complement activation (CH50) test. [less ▲]

Detailed reference viewed: 115 (37 ULg)